STMicroelectronics and Politecnico di Milano Build FASTER 3D Graphics Application using FPGAs
Geneva -- December 11, 2014 -- STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, today announced that it had tested and validated an experimental 3D-graphics application based on ray-tracing technology that had been implemented on an ARM®-processor-based test chip attached to a Field-Programmable Gate Array (FPGA). Partially funded by the European Union Seventh Framework Programme (FP7 IC T 287804), the effort for “Facilitating Analysis and Synthesis Technologies For Effective Reconfiguation” (FASTER) was performed as part of a tight R&D cooperation with Politecnico di Milano that also involved Foundation for Research and Technology – Hellas.
FPGAs are special-purpose silicon chips that can be programmed to change their function. These devices can dynamically modify their function during operation to morph between different circuits. Reconfigurable FPGA hardware is often used to deliver greater performance per unit of space, power, and cost, compared with general-purpose central- and graphics-processing units (CPUs and GPUs) for a wide range of embedded applications.
"The Multimedia and Smart Camera markets, in particular, have a high need for added-value functionalities in order to effectively capture their growth potential. A flexible, low-cost system based on reconfigurable hardware can address that need and meet market demands much more effectively than traditional processor-based systems,” said Danilo Pau, Senior Member, Institute of Electrical and Electronics Engineers, and Senior Principal Engineer, Senior Member of the Technical Staff, STMicroelectronics. "The technology developed as part of the FASTER project has the potential to boost computational power per silicon area per power consumption while adding a new dimension to embedded systems capabilities."
About FASTER
FP7 IC T 287804 FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) is a multi-national research project partially funded by the European Commission’s Seventh Framework Program (FP7) for Research and Technological Development. The commercial partners in the project are: Maxeler Technologies, STMicroelectronics, and Synelixis Solutions. Research & Academic partners are: Chalmers University of Technology, Foundation for Research and Technology – Hellas, Ghent University, Imperial College London, and Politecnico di Milano. The project started on September 1st, 2011 and ran for 3 years. Please visit http://www.fp7-faster.eu for more information.
About STMicroelectronics
ST is a global leader in the semiconductor market serving customers across the spectrum of sense and power technologies and multimedia convergence applications. From energy management and savings to trust and data security, from healthcare and wellness to smart consumer devices, in the home, car and office, at work and at play, ST is found everywhere microelectronics make a positive and innovative contribution to people's life. By getting more from technology to get more from life, ST stands for life.augmented. In 2013, the Company's net revenues were $8.08 billion. Further information on ST can be found at www.st.com.
|
Related News
- Omnitek Releases Highly Optimised 3D LUT IP for FPGAs
- Xilinx Announces General Availability of Virtex UltraScale+ FPGAs in Amazon EC2 F1 Instances
- Omnitek announce availability of IP for SDI I/O, SDI Gearbox and SDI Standards Conversion for Xilinx FPGAs
- Microsemi and Sibridge Technologies Collaborate to Develop Portfolio of High-speed Protocol IPs for SmartFusion2 and IGLOO2 FPGAs
- Microsemi Steps Up Its Cyber Security Leadership in FPGAs: SmartFusion2 SoC FPGAs and IGLOO2 FPGAs Enhanced with Physically Unclonable Function Technology
Breaking News
- Jury is out in the Arm vs Qualcomm trial
- Ceva Seeks To Exploit Synergies in Portfolio with Nano NPU
- Synopsys Responds to U.K. Competition and Markets Authority's Phase 1 Announcement Regarding Ansys Acquisition
- Alphawave Semi Scales UCIe™ to 64 Gbps Enabling >20 Tbps/mm Bandwidth Density for Die-to-Die Chiplet Connectivity
- RaiderChip Hardware NPU adds Falcon-3 LLM to its supported AI models
Most Popular
E-mail This Article | Printer-Friendly Page |