How Will Deep Learning Change SoCs?
Junko Yoshida, EETimes
3/30/2015 00:00 AM EDT
MADISON, Wis. – Deep Learning is already changing the way computers see, hear and identify objects in the real world.
However, the bigger -- and perhaps more pertinent -- issues for the semiconductor industry are: Will “deep learning” ever migrate into smartphones, wearable devices, or the tiny computer vision SoCs used in highly automated cars? Has anybody come up with SoC architecture optimized for neural networks? If so, what does it look like?
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related News
- How Will 5G Advanced Change RF Design?
- Harvard Researchers Select Flex Logix's Embedded FPGA Technology To Design Deep Learning SoCs
- Reading the tea leaves: How deep will EDA losses go?
- Neurxcore Introduces Innovative NPU Product Line for AI Inference Applications, Powered by NVIDIA Deep Learning Accelerator Technology
- Syntiant's Deep Learning Computer Vision Models Deployed on Renesas RZ/V2L Microprocessor
Breaking News
- Breker RISC-V SystemVIP Deployed across 15 Commercial RISC-V Projects for Advanced Core and SoC Verification
- Veriest Solutions Strengthens North American Presence at DVCon US 2025
- Intel in advanced talks to sell Altera to Silverlake
- Logic Fruit Technologies to Showcase Innovations at Embedded World Europe 2025
- S2C Teams Up with Arm, Xylon, and ZC Technology to Drive Software-Defined Vehicle Evolution
Most Popular
- Intel in advanced talks to sell Altera to Silverlake
- Arteris Revolutionizes Semiconductor Design with FlexGen - Smart Network-on-Chip IP Delivering Unprecedented Productivity Improvements and Quality of Results
- RaiderChip NPU for LLM at the Edge supports DeepSeek-R1 reasoning models
- YorChip announces Low latency 100G ULTRA Ethernet ready MAC/PCS IP for Edge AI
- AccelerComm® announces 5G NR NTN Physical Layer Solution that delivers over 6Gbps, 128 beams and 4,096 user connections per chipset