IBM Demos III-V FinFETs on Silicon
CMOS Compatible Process for Advanced Nodes
R. Colin Johnson, EETimes
6/18/2015 10:20 PM EDT
PORTLAND, Ore.--The entire semiconductor industry is trying to find a way to exploit the higher electron mobility of indium, gallium and arsenide (InGaAs) without switching from silicon substrates, including the leaders at Intel and Samsung. IBM has demonstrated how to achieve this with standard CMOS processing.
Last month IBM showed a technique of putting III-V compounds of InGaAs onto silicon-on-oxide (SOI) wafers, but now a different research group claims to have found an even better way that uses regular bulk-silicon wafers and have fabricated the InGaAs-on-silicon FinFETs to prove it.
"Starting from a bulk silicon wafer, instead of SOI, we first put down an oxide layer and make a trench through to the silicon below, then grow the indium gallium arsenide from that seed--its a very manufacturable process," Jean Fompeyrine, manager of advanced functional materials told EE Times. Fompeyrine performed the work with Lukas Czornomaz, an advanced CMOS scientist with IBM Research.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related News
Breaking News
- JEDEC® and Industry Leaders Collaborate to Release JESD270-4 HBM4 Standard: Advancing Bandwidth, Efficiency, and Capacity for AI and HPC
- BrainChip Gives the Edge to Search and Rescue Operations
- ASML targeted in latest round of US tariffs
- Andes Technology Celebrates 20 Years with New Logo and Headquarters Expansion
- Creonic Unveils Bold Rebrand to Drive Innovation in Communication Technologies
Most Popular
- Cadence to Acquire Arm Artisan Foundation IP Business
- AMD Achieves First TSMC N2 Product Silicon Milestone
- Why Do Hyperscalers Design Their Own CPUs?
- Siemens to accelerate customer time to market with advanced silicon IP through new Alphawave Semi partnership
- New TSN-MACsec IP core for secure data transmission in 5G/6G communication networks