IBM Demos III-V FinFETs on Silicon
CMOS Compatible Process for Advanced Nodes
R. Colin Johnson, EETimes
6/18/2015 10:20 PM EDT
PORTLAND, Ore.--The entire semiconductor industry is trying to find a way to exploit the higher electron mobility of indium, gallium and arsenide (InGaAs) without switching from silicon substrates, including the leaders at Intel and Samsung. IBM has demonstrated how to achieve this with standard CMOS processing.
Last month IBM showed a technique of putting III-V compounds of InGaAs onto silicon-on-oxide (SOI) wafers, but now a different research group claims to have found an even better way that uses regular bulk-silicon wafers and have fabricated the InGaAs-on-silicon FinFETs to prove it.
"Starting from a bulk silicon wafer, instead of SOI, we first put down an oxide layer and make a trench through to the silicon below, then grow the indium gallium arsenide from that seed--its a very manufacturable process," Jean Fompeyrine, manager of advanced functional materials told EE Times. Fompeyrine performed the work with Lukas Czornomaz, an advanced CMOS scientist with IBM Research.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related News
Breaking News
- intoPIX Powers Ikegami's New IPX-100 with JPEG XS for Seamless & Low-Latency IP Production
- Tower Semiconductor and Alcyon Photonics Announce Collaboration to Accelerate Integrated Photonics Innovation
- Qualcomm initiates global anti-trust complaint about Arm
- EnSilica Agrees $18m 7 Year Design and Supply ASIC Contract
- SiliconIntervention Announces Availability of Silicon Based Fractal-D Audio Amplifier Evaluation Board
Most Popular
- Qualcomm initiates global anti-trust complaint about Arm
- Siemens acquires Altair to create most complete AI-powered portfolio of industrial software
- Alphawave Semi Reveals Suite of Optoelectronics Silicon Products addressing Hyperscaler Datacenter and AI Interconnect Market
- EnSilica Agrees $18m 7 Year Design and Supply ASIC Contract
- Rapidus Announces Strategic Partnership with Quest Global to Enable Advanced 2nm Solutions for the AI Chip Era