Mentor Graphics Drives Next-Generation, Low-Power Verification with UPF Successive Refinement Methodology
WILSONVILLE, Ore. -- Sept. 9, 2015 -- Mentor Graphics Corporation (NASDAQ: MENT) today announced support for the Low Power Successive Refinement Methodology using Questa Power Aware Simulation and new capabilities in the Visualizer Debug Environment to dramatically improve verification re-use and productivity for low power designs using ARM technology®.
UPF, which specifies ‘power intent’ separate from the design, is used in both the verification and implementation stages of chip design. Traditional low power methodologies that focus on implementation start to break down as complex power management requirements increase. The Successive Refinement Methodology defines power intent more abstractly early in the design cycle, and refines/augments it in more detail as the design moves to implementation. This improves the overall verification process and the reuse of verification results at each step. The Successive Refinement Methodology focuses on dividing UPF into Constraint UPF for IP/blocks, Configuration UPF for verification and Implementation UPF. This enables soft IP and sub-systems to be developed from multiple sources (along with their power intent) and then quickly verified together to preserve equity in power verification.
The Successive Refinement Methodology was introduced into the UPF specification by John Biggs, senior principal research engineer, ARM and chair of IEEE1801. Mentor and ARM have worked closely on the Successive Refinement Methodology since its inception. This collaboration has resulted in ARM delivering Constraint UPF and example Configuration UPF for ARM IP for a flow verified with Questa Power Aware Simulation and completed through implementation (synthesis and place and route).
“Delivering increasingly energy-efficient processor IP, in the fast-paced markets that ARM operates in, leads to a constant demand for new process optimization tools,” said John Biggs, senior principal engineer, ARM and chair of IEEE1801. “By using the Successive Refinement Methodology, ARM is able to deliver IP built for low power applications alongside a UPF description of the technology-independent power intent. This allows our partners to dramatically reduce their low power verification cost and time.”
“Mentor has been driving low power standards from the inception with UPF. The collaboration with ARM that resulted in the Successive Refinement Methodology enables a much needed “shift-left” to address the growing complexities of low power verification,” said John Lenyo, vice president and general manager, Design Verification Technology Division, Mentor Graphics. “Questa Power Aware Simulation comes with native UPF2.1 support, automatic low power checks and coverage. Coupled with unique exploration of the power management structures and behaviors with the Visualizer Debug Environment, it accelerates and automates low power verification flows using the Successive Refinement Methodology.”
About the Questa Functional Verification platform
The Questa Functional Verification platform is a core technology in the Mentor® Enterprise Verification Platform (EVP) – a platform that boosts productivity in ASIC and SoC functional verification by combining cutting-edge verification technologies in a cohesive verification platform.
Mentor Graphics and Questa are registered trademarks of Mentor Graphics Corporation. All other company or product names are the registered trademarks or trademarks of their respective owners.
About Mentor Graphics
Mentor Graphics Corporation is a world leader in electronic hardware and software design solutions, providing products, consulting services and award-winning support for the world's most successful electronic, semiconductor and systems companies. Established in 1981, the company reported revenues in the last fiscal year in excess of $1.24 billion. Corporate headquarters are located at 8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
|
Related News
- Mentor Graphics Announces the First IP to System, UPF-based Low-power Verification Solution
- Mentor Graphics Delivers Next-Generation Emulation Solutions for the Verification of High-Speed Ethernet Products
- Imagination announces next-generation IEEE 802.11ax/Wi-Fi 6 IP for low-power applications
- Mentor Graphics Veloce VirtuaLAB Adds Next-Generation Protocols for Leading-edge Networking Designs
- Mentor Graphics Announces the Next-Generation Nucleus RTOS Addressing Power Management and Connectivity Issues for Embedded Systems
Breaking News
- Logic Design Solutions launches Gen4 NVMe host IP
- ULYSS1, Microcontroller (MCU) for Automotive market, designed by Cortus is available
- M31 is partnering with Taiwan Cooperative Bank to launch an Employee Stock Ownership Trust to strengthen talent retention
- Sondrel announces CEO transition to lead next phase of growth
- JEDEC Publishes LPDDR5 CAMM2 Connector Performance Standard
Most Popular
- Arm's power play will backfire
- Alphawave Semi Selected for AI Innovation Research Grant from UK Government's Advanced Research + Invention Agency
- Secure-IC obtains the first worldwide CAVP Certification of Post-Quantum Cryptography algorithms, tested by SERMA Safety & Security
- Weebit Nano continuing to make progress with potential customers and qualifying its technology Moving closer to finalisation of licensing agreements Q1 FY25 Quarterly Activities Report
- PUFsecurity Collaborate with Arm on PSA Certified RoT Component Level 3 Certification for its Crypto Coprocessor to Provide Robust Security Subsystem Essential for the AIoT era
E-mail This Article | Printer-Friendly Page |