ZTE Wireless Institute Achieves Performance Breakthrough for Deep Learning with Intel FPGAs
January 24, 2017 -- Intel and ZTE, a leading technology telecommunications equipment and systems company, have worked together to reach a new benchmark in deep learning and convolutional neural networks (CNN). The technology is what many companies in Internet search and artificial intelligence are trying to advance, and includes picture search and matching, as one example.
“Perception, such as recognizing a face in an image, is one of the essential goals of the ZTE 5G System,” said Duan Xiangyang, vice president of ZTE Wireless Institute. “Deep learning technology is very important as it can enable such perception in mobile edge computing systems, thus making ZTE’s 5G System smarter.”
The test took place in Nanjing City, China, where ZTE’s engineers used Intel’s midrange Arria® 10 FPGA for a cloud inferencing application using a CNN algorithm.
ZTE has achieved a new record – beyond a thousand images per second in facial recognition – with what is known as “theoretical high accuracy” achieved for its custom topology. Intel’s Arria 10 FPGA accelerated the raw design performance more than 10 times while maintaining the accuracy.
The Arria 10 FPGA provides up to 1.5 teraflops (TFLOPs) single precision floating-point processing performance, 1.15 million logic elements and more than a terabit-per-second high-speed connectivity.
Such deep learning designs can be seamlessly migrated from the Arria 10 FPGA family to the high-end Intel Stratix® 10 FPGA family, and users can expect up to nine times performance boost.
Besides the impressive increase in performance, the team at ZTE Wireless Institute sped design time with the use of the OpenCL programming language.
“With the Intel reference design, and using the Intel SDK for OpenCL to program the FPGA, our development time was greatly shortened,” said Xiong Tiankui, chief engineer at ZTE Wireless Institute. “We are pleased with the benchmark achieved and thank the Intel Programmable Solutions Group for supporting our project.”
Resources:
Configuration:
The benchmark was achieved on a server holding 4S Intel Xeon E5-2670v3 processors running at 2.30GHz, 128GB DDR4; Intel PSG Arria 10 FPGA Development Kit with one 10AGX115 FPGA, 4GB DDR4 SODIMM, Intel Quartus Prime and OpenCL SDK v16.1.
|
Intel FPGA Hot IP
Related News
- Microsoft Outlines Hardware Architecture for Deep Learning on Intel FPGAs
- SK Telecom Deploys Xilinx FPGAs for AI Acceleration, Achieves 5X Performance/16X Performance-per-watt over GPUs
- Edgeware Video-on-Demand Server Achieves Breakthrough Performance With Altera FPGAs
- Efinix Releases Topaz Line of FPGAs, Delivering High Performance and Low Power to Mass Market Applications
- Nextera-Adeas ST 2110 IP cores are now available on Intel FPGAs
Breaking News
- HPC customer engages Sondrel for high end chip design
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- TSMC drives A16, 3D process technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
E-mail This Article | Printer-Friendly Page |