ARM and CSNE from the University of Washington partner to develop brain-implantable chips
May 16, 2017 -- The human brain is one of the final frontiers for technological innovation. Imagine a future where paralysis resulting from spinal cord injuries is only a temporary obstacle, rather than a permanent state. Imagine artificial limbs that can send the user feedback about how hot or cold their cup of coffee is, or just how tightly they are holding their loved one’s hand. Imagine a future where temporary implants can help an individual recover from a stroke or manage other debilitating neurological conditions. Now, all of these seemingly impossible medical applications of new technology stand to be within reach for bi-directional brain-computer interfaces.
ARM and the Center for Sensorimotor Neural Engineering (CSNE) have signed an agreement whereby the CSNE will develop a unique ‘brain-implantable’ system-on-a-chip (SoC) for bi-directional brain-computer interfaces (BBCI) aimed at solving neurodegenerative disorders. Based at the University of Washington, the CSNE is a National Science Foundation engineering research center working to develop innovative ways to connect a deep computational understanding of how the brain adapts and processes information with the design of implantable devices.
The project: addressing chronic health issues through brain-computer interfaces
The research project will enable us to begin solving real world health problems with brain-implantable chips aimed at tackling a raft of debilitating neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease and even paralysis. The long-term goal is to assist people affected by neurological conditions, by engineering neurotechnology that will help the body heal, feel and move again.
The new SoC will play a vital role in decoding the complex signals formed within the brain, digitizing them so they can be processed and acted upon, with the end result of controlling the body’s muscle functions – which is the key to tackling neurodegenerative disease.
Brain-implantable chips need to be very small, highly power-efficient and capable. Our industry-proven ARM Cortex-M0 processor, the smallest ARM processor available, will contribute to this very important area of research by being an integral part of the CSNE’s brain-implantable SoC.
The project is a natural fit for ARM and our vision of improving lives around the globe by shaping a smarter, happier and healthier world with technology. Our ongoing goal of increasing the power-efficiency of ARM products aligns with CSNE’s advanced research work in developing low-power, efficient and implantable neural devices for medical applications.
Improving quality of life for those impacted by paralysis and other neurological disorders
The BBCI chip is being designed to address stroke, spinal cord injury and other neurological conditions. People who have experienced a stroke or spinal cord injury often have health issues, such as paralysis, which can impact their quality of life by preventing them from moving parts of their body, for example, a hand or an arm.
The research project will design a SoC which is able to take neural signals from the brain that represent movements the person with paralysis wants to make; before directing those signals to a stimulator implanted in the spinal cord itself. This will enable the person to make the desired movements when they want to, effectively overcoming their paralysis. In the future, the device will also be able to send information in the reverse direction, allowing the person to once again feel what their hand is touching.
Research is also demonstrating that use of such a system may eventually help to coax brain neurons to rewire in ways that help the brain recover from stroke. The result of this BBCI collaboration is development of neural devices that will benefit people by restoring sensation, limb function and augmenting the brain’s natural healing capabilities.
The brain and beyond
Dr. Scott Ransom, the CSNE’s Director of Industry Relations and Innovation, shared his thoughts about the collaboration:
“We are very excited to be collaborating with a company like ARM. ARM’s strong expertise in power-efficient microprocessors compliments the CSNE’s work in computational neuroscience and brain-computer interfacing, and we expect the partnership to lead to advances in not only medical technology but other applications as well, such as consumer electronics.”
As it matures, this technology, when combined with the human brain - one of the most critical centers of the human body - could be used to solve myriad challenges in health care and beyond.
|
Arm Ltd Hot IP
Related News
- GLOBALFOUNDRIES and Cyclos Semiconductor Partner to Develop High-Performance, Low-Power ARM Cortex-A15 Processors Using Resonant Clock Mesh Technology
- DeepComputing and Andes Technology Partner to Develop the World's First RISC-V AI PC with 7nm QiLai SoC, Featuring Ubuntu Desktop
- Agnisys Joins Arm Partner Program and Releases Solution Brief for Functionally Safe Arm-Based SoC Design
- L&T Semiconductor Technologies Partners with CP Plus to develop Semiconductor Chips for CCTV Camera Solutions
- SEMIFIVE joins Arm Total Design with plans to develop Arm Neoverse-powered HPC Platform
Breaking News
- EnSilica plc - Audited Full Year Results for the Year Ended 31 May 2024
- Logic Design Solutions launches Gen4 NVMe host IP
- ULYSS1, Microcontroller (MCU) for Automotive market, designed by Cortus is available
- M31 is partnering with Taiwan Cooperative Bank to launch an Employee Stock Ownership Trust to strengthen talent retention
- Sondrel announces CEO transition to lead next phase of growth
Most Popular
- Arm's power play will backfire
- Siemens strengthens leadership in industrial software and AI with acquisition of Altair Engineering
- Sondrel announces CEO transition to lead next phase of growth
- M31 is partnering with Taiwan Cooperative Bank to launch an Employee Stock Ownership Trust to strengthen talent retention
- ULYSS1, Microcontroller (MCU) for Automotive market, designed by Cortus is available
E-mail This Article | Printer-Friendly Page |