CAST Drives Automotive IP Forward with New AVB/TSN Ethernet and SAE J2716 Sensor Bus Cores plus CAN-FD Time-Stamping
New IEEE 802.1AS AVB/TSN and SENT/SAE J2716 Cores now available; CAN/CAN-FD Controller Core now supports AUTOSAR-compliant time-stamping
WOODCLIFF LAKE, NJ USA -- June 13 2017 -- Semiconductor intellectual property provider CAST, Inc. today announced three significant improvements to its automotive IP family:
- A new IEEE 802.1AS Hardware Protocol Stack Core works with any eMAC (Ethernet Media Access Controller) to enable easy development of time-aware nodes for standard AVB/TSN (Audio Video Bridging/Time Sensitive Networking) networks. This serves a variety of audio/visual and industrial applications, and is essential for the growing use of Ethernet to connect diverse automotive systems.
- A new, full-featured SENT/SAE J2716 Controller Core serves as a transmitter and/or receiver for the Single Edge Nibble Transmission protocol. It complies with the SAE J2716 standard and also the de-facto standard Short PWM Code (SPC) protocol, and can serve as a simpler, lower-cost alternative to the popular LIN bus for connections between automotive sensors and controllers.
- The CAN 2.0 & CAN FD Bus Controller Core now supports time-stamping compliant to the CiA 603 specification, which enables efficient hardware time-based synchronization for AUTOSAR (AUTomotive Open System ARchitecture) systems. This adds time-sensitive application support to one of the most field-proven, feature-rich, and transceiver-agnostic FPGA/ASIC CAN controller cores on the market. [A1]
“Working with multiple CAN FD customers every month has made us acutely aware of the special needs of automotive system designers,” said Nikos Zervas, chief executive officer for CAST. “These engineers face a growing demand for more sophisticated electronics at all levels in the market, and we believe these additions to our automotive IP line will further help them succeed in the face of rising complexity and diminishing time to market and cost flexibility.”
The CAN Controller and 802.1AS Stack cores are sourced from Fraunhofer IPMS. The SENT/J2716 Controller core was developed by CAST’s USA engineering team. All are available now, with royalty-free licensing.
About CAST, Inc.
CAST develops, aggregates, and integrates digital IP cores and subsystems. The company’s product line includes low-power, high-value processors, data compression, video and image codecs, peripherals, interfaces, and more; see details at www.cast-inc.com.
|
CAST, Inc. Hot IP
Related News
- Synopsys Expands VDK for Renesas RH850 Ethernet AVB and CAN-FD for Automotive System Software Development
- CAST And Avery Design Systems Expand IP Partnership to Support Next Generation High-Bandwidth Automotive Networking And Control Systems
- CAST Releases TSN Ethernet Subsystem for Automotive and Industrial Applications
- intoPIX Drives Innovation in Automotive Ethernet and Data Transmission
- Comcores Announces Availability of its Ultra-Compact Ethernet TSN End Station Controller IP for Automotive Networks
Breaking News
- Breker RISC-V SystemVIP Deployed across 15 Commercial RISC-V Projects for Advanced Core and SoC Verification
- Veriest Solutions Strengthens North American Presence at DVCon US 2025
- Intel in advanced talks to sell Altera to Silverlake
- Logic Fruit Technologies to Showcase Innovations at Embedded World Europe 2025
- S2C Teams Up with Arm, Xylon, and ZC Technology to Drive Software-Defined Vehicle Evolution
Most Popular
- Intel in advanced talks to sell Altera to Silverlake
- Arteris Revolutionizes Semiconductor Design with FlexGen - Smart Network-on-Chip IP Delivering Unprecedented Productivity Improvements and Quality of Results
- RaiderChip NPU for LLM at the Edge supports DeepSeek-R1 reasoning models
- YorChip announces Low latency 100G ULTRA Ethernet ready MAC/PCS IP for Edge AI
- AccelerComm® announces 5G NR NTN Physical Layer Solution that delivers over 6Gbps, 128 beams and 4,096 user connections per chipset
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |