Hiroshima University Research Team Accelerates the Development of a Computer-Aided Medical Diagnosis System with Cadence Tensilica Vision P6 DSP Core and Protium S1 FPGA-Based Prototyping Platform
SAN JOSE, Calif. -- Oct 11, 2017 -- Cadence Design Systems, Inc. (NASDAQ: CDNS) today announced that Hiroshima University is using Cadence® technology in its development of a computer-aided diagnosis system for colorectal endoscopic images. Led by Associate Prof. Koide of the Research Institute for Nanodevice and Bio Systems (RNBS), the team developed the computer-aided diagnosis system using the Cadence Tensilica® Vision P6 digital signal processor (DSP) core for convolutional neural network (CNN) processing and support vector machine (SVM) classification, and brought up the software and verified the system using the Cadence Protium™ S1 FPGA-Based Prototyping Platform. With the help of Cadence Tensilica technology, the Hiroshima University project has demonstrated a 35X reduction in image processing time, enabling real-time processing of diagnostic images for the healthcare market.
Due to the increase in the number of colorectal cancer patients in recent years, a diagnosis system capable of presenting additional image analysis information to physicians has been desired to aid in early detection. Such a system needs to evaluate pathology type in high definition (1920 x 1080 pixel) using the features extracted with narrow band imaging (NBI) magnification, while offering high estimation accuracy and enabling real-time response for clinicians.
To address this need, Hiroshima University developed an approach using the configurable Vision P6 DSP to perform CNN processing for feature extraction from the endoscopic images and SVM for the pathology type identification, improving computational efficiency for this high-complexity processing. Furthermore, the software development and verification was finalized with the Protium S1 platform, ensuring early and proper system functionality. For more information on the Tensilica Vision P6 DSP, please visit https://www.cadence.com/go/visionp6dsp. For more information on the Protium S1 FPGA-Based Prototyping Platform, please visit http://www.cadence.com/go/protiumhiroshima.
The Vision P6 DSP efficiently executes both image processing and CNN processing, which are indispensable in deep learning. It supports image processing and CNN processing on a flexible high-performance DSP core. Through this deployment, the Hiroshima University has demonstrated that the system meets the requirement for real-time processing, low latency and estimation accuracy.
The Protium S1 platform, part of the Cadence Verification Suite, is designed for early, pre-silicon software development and significantly improves productivity by reducing prototype bring-up time from months to weeks compared to competitive solutions. The platform let the research team verify the system’s performance early in the process, allowing for the early identification of bugs, speeding up development time. For more information on the Verification Suite, please visit http://www.cadence.com/go/verification_suite.
“To meet our end goal of producing a diagnostic system that can be functional in a clinical application, it is necessary for the system to process images in real time and with low latency during an endoscopic examination,” said Associate Prof. Koide of RNBS at Hiroshima University. “Through our use of the Cadence Tensilica Vision P6 DSP core and the Protium S1 FPGA-Based Prototyping Platform, we were able to reduce the image processing time and optimize our co-design of software and hardware, creating a more streamlined development process. The Cadence technology was instrumental in allowing us to develop a tool that met medical needs for performance and precision.”
About Cadence
Cadence enables electronic systems and semiconductor companies to create the innovative end products that are transforming the way people live, work and play. Cadence® software, hardware and semiconductor IP are used by customers to deliver products to market faster. The company’s System Design Enablement strategy helps customers develop differentiated products—from chips to boards to systems—in mobile, consumer, cloud datacenter, automotive, aerospace, IoT, industrial and other market segments. Cadence is listed as one of Fortune Magazine's 100 Best Companies to Work For. Learn more at www.cadence.com.
|
Cadence Hot IP
Related News
- Hiroshima University Research Team Accelerates Automotive Algorithm Development with Cadence Protium Rapid Prototyping Platform
- Cadence Launches Protium S1 FPGA-Based Prototyping Platform for Early Software Development
- Amlogic Reduces HW/SW Integration Time for Multimedia SoCs by Two Months Using the Cadence Protium S1 FPGA-Based Prototyping Platform
- Cadence Announces Protium Rapid Prototyping Platform and Expands System Development Suite Low-Power Verification
- Cadence Accelerates Intelligent SoC Development with Comprehensive On-Device Tensilica AI Platform
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |