Arteris IP and Synopsys Accelerate the Optimization of Heterogeneous Multicore Neural Network Systems-on-Chip
CAMPBELL, Calif. -- January 30, 2018 -- Arteris IP, the innovative supplier of silicon-proven commercial system-on-chip (SoC) interconnect IP, today announced the integration of its Ncore Cache Coherent IP with the Synopsys® Platform Architect™ virtual prototyping solution to provide designers of neural network and autonomous driving SoCs with the ability to analyze system-level performance and power consumption earlier in the design cycle for their next-generation multicore architectures.
“As we collaborate with industry leaders developing neural network and autonomous driving SoCs, we know first-hand that teams must quickly validate candidate architectures as early as possible, and then optimize them for performance and power consumption,” said Eshel Haritan, vice president of R&D in the Synopsys Verification Group. “These architectures can use different combinations of hardware accelerators, and analysis requires state-of-the-art simulation. Combining Platform Architect and Ncore System models provides designers with the ability to analyze and optimize an entire heterogeneous multicore SoC architecture before RTL is available.”
Artificial Intelligence (AI) and autonomous driving systems require multiple heterogeneous processing elements connected using complex caching, interconnect and memory architectures, all of which are challenging to analyze, optimize, and tune. The integration of Ncore IP with Platform Architect provides system architects with a fast and accurate simulation model of Arteris Ncore Cache Coherent IP, allowing them to make smart architectural trade-off decisions based on the deep visibility that the model provides. Ncore IP has been quickly adopted by automotive and AI leaders such as NXP, Toshiba, and others. Close integration of the products and design flows developed by Arteris IP and Synopsys will continue to benefit the greater SoC market.
The Arteris Ncore IP and Synopsys Platform Architect integration provides the following benefits for system design teams:
- Earlier architecture exploration for performance and power. Arteris’ Ncore interconnect models in Synopsys’ Platform Architect enable early architecture analysis and optimization of performance and power before system RTL is available
- Unparalleled visibility into Ncore interconnect internal states, which allows detailed system-wide analysis of resource utilization (e.g., snoop filters, cache hits/misses) and interconnect metrics (e.g., bandwidth, latency)
- Industry-leading interconnect model performance and flexibility. Sub-16nm systems are large and complex; the Ncore SystemC model is highly optimized for simulation performance, enabling exploration of hundreds of design options with quick turnaround time
“Our integration with Synopsys Platform Architect provides Ncore users with incomparable visibility into the internals of the highly configurable Ncore interconnect IP, delivering to architects and design teams detailed knowledge about their systems that can then be used for performance exploration, optimization and validation,” said Joe Butler, Vice President of Engineering at Arteris IP. “Our joint engineering work with Synopsys has resulted in a combined solution that eases architecture, design, and configuration of complex heterogeneous multicore SoCs.”
About Arteris IP
Arteris IP provides system-on-chip (SoC) interconnect IP to accelerate SoC semiconductor assembly for a wide range of applications from automobiles to mobile phones, IoT, cameras, SSD controllers, and servers for customers such as Samsung, Huawei / HiSilicon, Mobileye (Intel), Altera (Intel), and Texas Instruments. Arteris IP products include the Ncore cache coherent and FlexNoC non-coherent interconnect IP, as well as optional Resilience Package (functional safety) and PIANO automated timing closure capabilities. Customer results obtained by using the Arteris product line include lower power, higher performance, more efficient design reuse and faster SoC development, leading to lower development and production costs. For more information, visit http://www.arteris.com
|
Arteris Hot IP
Related News
- Synopsys Advances Virtual Prototyping to Enable System and Semiconductor Supply Chain Collaboration for Next-Generation SoCs
- Synopsys Platform Architect MCO Delivers Industry's First Power-Aware Architecture Analysis Tool Supporting IEEE 1801-2015 UPF 3.0
- Arteris Expands Ncore Cache Coherent Interconnect IP To Accelerate Leading-Edge Electronics Designs
- Faraday Extends SoC Design Services to Include Virtual Prototyping Solution Using Synopsys Virtualizer
- Synopsys Delivers Industry's First Cache Coherent Subsystem Verification Solution for Arteris Ncore Interconnect
Breaking News
- Cadence to Acquire Secure-IC, a Leader in Embedded Security IP
- Blue Cheetah Tapes Out Its High-Performance Chiplet Interconnect IP on Samsung Foundry SF4X
- Alphawave Semi to Lead Chiplet Innovation, Showcase Advanced Technologies at Chiplet Summit
- YorChip announces patent-pending Universal PHY for Open Chiplets
- PQShield announces participation in NEDO program to implement post-quantum cryptography across Japan
Most Popular
- Qualitas Semiconductor Signs IP Licensing Agreement with Edge AI Leader Ambarella
- BrainChip Provides Low-Power Neuromorphic Processing for Quantum Ventura's Cyberthreat Intelligence Tool
- Altera Launches New Partner Program to Accelerate FPGA Solutions Development
- Alchip Opens 3DIC ASIC Design Services
- Electronic System Design Industry Posts $5.1 Billion in Revenue in Q3 2024, ESD Alliance Reports
E-mail This Article | Printer-Friendly Page |