Eta Compute Launches Machine Learning Platform with Ultra-Low-Power Consumption for Edge Devices
Exhibiting at Arm TechCon, the company will demonstrate the latest in artificial intelligence including autonomous learning.
WESTLAKE VILLAGE, Calif., October 16, 2018 – Eta Compute Inc., a company dedicated to delivering machine learning to mobile and edge devices using its revolutionary new platform, today announced the availability of its latest machine learning SoC that includes autonomous learning. Named TENSAI®, this ground-breaking product performs image classification, keyword spotting, and wakeup word detection that redefines the standard for ultra-low power embedded solutions.
“I know machine learning on tiny, cheap battery powered chips is coming,” said Pete Warden, Google Technical Lead of TensorFlow. This will open the door for some amazing new applications.”
The TENSAI chip includes the third generation of Eta Compute’s delay insensitive logic which enables products to reliably operate at the lowest supply voltage resulting in the lowest power consumption.
Other unique features of this SoC include:
- Eta Compute’s own kernel for spiking neural network (SNN) and CNN minimizes operations and lowers power consumption
- Autonomous Learning of speech, image, and other data where classification occurs on the data without labels enabling advances in the broad area of anomaly detection on systems where failure modes are unknown or data difficult to obtain
- Image classification application consuming only 0.4mJ per picture, a 30X power reduction over recently published results
- Always-on wake-up word application which consumes 500uA during classification or 50uA during silence meeting strict requirements for wearables and battery-operated consumer electronics
“Our patented hardware architecture (DIAL™) is combined with our fully customizable algorithms based on both CNN and SNNs to perform machine learning inferencing in hundreds of microwatts,” said Nara Srinivasa Ph. D., CTO of Eta Compute. “These are being sampled to customers who are integrating them into products such as smart speakers and object detection platforms to deliver machine intelligence to the network edge.”
The processor is trainable using the popular TensorFlow(TM) or Caffe software and Eta Compute’s custom kernel further optimizes the trained model. TENSAI uses a tightly integrated DSP processor and microcontroller architecture for a significant reduction in power for embedded machine intelligence. This solution can support a wide range of applications in audio, video, and signal processing where power is a severe constraint as in mobile devices, wearable, industrial sensing, and camera markets.
Furthermore, for real world scenarios for which readily labeled data is scarce or unavailable, our autonomous learning algorithms can extract actionable intelligence despite this limitation. This makes Eta Compute’s solution much broader in scope including intelligence for devices that harvest energy in remote environments.
Eta Compute SoC with machine learning is sampling now with mass production expected in Q1 of 2019.
About Eta Compute
Eta Compute was founded in 2015 with the vision that the proliferation of intelligent devices at the network edge will make daily life safer, healthier, comfortable and more convenient without sacrificing privacy and security. It’s recently launched DIAL™ technology is the world’s lowest power embedded compute platform and is a natural architecture to support event driven neuromorphic learning and machine intelligence for portable devices. For more information visit EtaCompute.com
|
Related News
- Eta Compute Launches Industry's First Neuromorphic Platform for Ultra-Low-Power Machine Intelligence at the Edge
- SiMa.ai Adopts Arm Technology to Deliver a Purpose-built Heterogeneous Machine Learning Compute Platform for the Embedded Edge
- Eta Compute Partners with Edge Impulse to Accelerate the Development and Deployment of Machine Learning at the Edge
- Unleashing Edge AI Potential: Eta Compute's New Collaboration with NXP Semiconductors
- SiMa.ai Partners with GUC to Accelerate Time to Market for Industry's First Purpose-Built Machine Learning Platform for the Embedded Edge
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |