Attopsemi Technology Attended SemIsrael 2018 and Presented a Talk "100% Testable OTP for Automotive"
Hsinchu, Taiwan –December 20, 2018– Attopsemi Technology attended SemIsrael on November 27, 2018 in Tel Aviv, Israel and provided a talk “100% Testable OTP for Automotive.” More than 40 semiconductor chip and IP companies worldwide joined this event that attracted several hundreds of attendees.
In a well-received speech during the Technical Session, Shine Chung, Chairman of Attopsemi, presented the topic “100% Testable OTP for Automotive.” In the automotive IC market, high reliability and low defects are two crucial features to avoid malfunctions and loss of lives. High reliability means that a good part can still be maintained in a good condition after using for long time. Low defects mean any faulty parts should be screened out before shipping to customers. I-fuse™ is a revolutionary “non-explosive” fuse technology that can be programmed below thermal runaway and above electro-migration (EM) threshold. This is different from other kinds of fuse technologies which are “explosive” during programming. On the contrary, I-fuse™ programming follows the physics, which is based on heat generation, heat dissipation, and electro-migration. The reliability of Attopsemi’s I-fuse™ is guaranteed by physics.
To ultimately achieve ZERO defect, OTP needs to be tested thoroughly to toss away every defective part. However, conventional OTP always struggled in a dilemma. Ideally, every OTP bit should be test programmed at least once to make sure bit can be programmable. Unfortunately, if that one bit has been programmed during test, the OTP macro cannot be used any more. Moreover since all bits will be read as 0 in a blank OTP, any internal blocks of OTP can not be tested if they are stuck at 0. If every bit cannot be fully test programmability, it would be nearly impossible to avoid yield loss when programming OTP in field.
Fortunately, I-fuse™ can solve the OTP testability issues completely. As we stated previously, I-fuse™ programming is based on heat assistant electro-migration. If an initial I-fuse™ resistance is tested below 400 ohm, for example, this I-fuse™ can surely generate enough heat to be programmable. Furthermore, since I-fuse™ program window will be characterized before being used, I-fuse™ programming yield can be estimated very accurately and the program yield can be nearly 100%, if programmed within the provided spec. Finally, every I-fuse™ functional block, such as I-fuse™ cell, array, X/Y-decoder, sense amplifier, control logic, and program circuits can be fully tested by generating a non-destructive programming state to make it temporary be read as 1. To achieve fake reading 1 for a blank OTP, we will apply a low voltage to VDDP pin in the program mode while reading this bit. With a low voltage applied in the selected bitline, the selected bit for “program” can be read as 1, instead of 0. As a result, many complicated SRAM-like of test patterns can be fully testable.
“Automotive ICs always have a goal to achieve ZERO defect.” explained by Shine Chung. “ZERO defect means no defect after shipping because of high cost for field return. Any defects should be fully tested and screened away before shipping. Therefore, testability is essential to reach this Holy Grail. Only I-fuse™ among all OTP technologies can reach this goal.”
Shine Chung, Chairman of Attopsemi (left) attended SemIsrael 2018 at Attopsemi’s Booth in Israel.
Shine Chung, Chairman of Attopsemi provided a talk “100% Testable OTP for Automotive.”
For more information, please visit Attopsemi website
About Attopsemi Technology
Founded in 2010, Attopsemi Technology is dedicated to developing and licensing fuse-based One-Time Programmable (OTP) IP to all CMOS process technologies from 0.7um to 7nm and beyond in various silicided polysilicon, HKMG, FDSOI and FinFET technologies. Attopsemi provides the best possible OTP solutions for all merits in small size, low voltage/current programming/read, high quality, high reliability, low power, high speed, wide temperature and high data security. Attopsemi's proprietary I-fuse™ OTP technologies have been proven in numerous CMOS technologies and in several silicon foundries.
|
Attopsemi Technology Hot IP
- 1x64 Bits OTP (One-Time Programmable) IP, GlobalFoundries 22nmFDX 0.8V/1.8V Proc ...
- 32x8 Bits OTP (One-Time Programmable) IP, TSMC 0.18μm Mixed-Signal 1.8V/3.3V Pr ...
- 512x8 Bits OTP (One-Time Programmable) IP, GLOBALFOUNDRIES 0.13um BCD 1.5V/5V Pr ...
- 4Kx8 Bits OTP (One-Time Programmable) IP, TSMC 0.18µm 1.8V/5V Mixed-Signal Proc ...
Related News
- Attopsemi Technology Attended 4th Japan SOI Symposium and Presented a Talk "I-fuse: A Disruptive OTP Technology"
- Attopsemi Technology Attended ChipEx2019 and Presented a Speech "I-fuse A Disruptive OTP (One-Time Programmable)"
- Attopsemi Released White Paper "I-fuse - Most Reliable and Fully Testable OTP"
- Attopsemi Technology Presented "I-fuse: Dream OTP Finally Comes True" and won the best Innovative IP award on IP SoC 2019 China
- DENSO Adopts Attopsemi's OTP to Upgrade Future Automotive Products
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |