CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough NVM Memory Cell
Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges
SAN FRANCISCO – Feb. 20, 2019 – Researchers at CEA-Leti and Stanford University have developed the world’s first circuit integrating multiple-bit non-volatile memory (NVM) technology called Resistive RAM (RRAM) with silicon computing units, as well as new memory resiliency features that provide 2.3-times the capacity of existing RRAM. Target applications include energy-efficient, smart-sensor nodes to support artificial intelligence on the Internet of Things, or “edge AI”.
The proof-of-concept chip has been validated for a wide variety of applications (machine learning, control, security). Designed by a Stanford team led by Professors Subhasish Mitra and H.-S. Philip Wong and realized in CEA-Leti’s cleanroom in Grenoble, France, the chip monolithically integrates two heterogeneous technologies: 18 kilobytes (KB) of on-chip RRAM on top of commercial 130nm silicon CMOS with a 16-bit general-purpose microcontroller core with 8KB of SRAM.
The new chip delivers 10-times better energy efficiency (at similar speed) versus standard embedded FLASH, thanks to its low operation energy, as well as ultra-fast and energy-efficient transitions from on mode to off mode and vice versa. To save energy, smart-sensor nodes must turn themselves off. Non-volatility, which enables memories to retain data when power is off, is thus becoming an essential on-chip memory characteristic for edge nodes. The design of 2.3 bits/cell RRAM enables higher memory density (NVM dense integration) yielding better application results: 2.3x better neural network inference accuracy, for example, compared to a 1-bit/cell equivalent memory.
The technology was presented on Feb. 19, at the International Solid-State Circuits Conference (ISSCC) 2019 in San Francisco in a paper titled, “A 43pJ/Cycle Non-Volatile Microcontroller with 4.7μs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Techniques”.
But NVM technologies (RRAM and others) suffer from write failures. Such write failures have catastrophic impact at the application level and significantly diminish the usefulness of NVM such as RRAM. The CEA-Leti and Stanford team created a new technique called ENDURER that overcomes this major challenge. This gives the chip a 10-year functional lifetime when continuously running inference with the Modified National Institute of Standards and Technology (MNIST) database, for example.
“The Stanford/CEA-Leti team demonstrated a complete chip that stores multiple bits per on-chip RRAM cell. Stored information is correctly processed when compared with previous demonstrations using standalone RRAM or a few cells in a RAM array,” said Thomas Ernst, Leti’s chief scientist for silicon components and technologies. “This multi-bit storage improves the accuracy of neural network inference, a vital component of AI.”
Mitra said the chip demonstrates several industry firsts for RRAM technology. These include new algorithms that achieve multiple bits-per-cell RRAM at the full memory level, new techniques that exploit RRAM features as well as application characteristics to demonstrate the effectiveness of multiple bits-per-cell RRAM at the computing system level, and new resilience techniques that achieve a useful lifetime for RRAM-based computing systems.
“This is only possible with a unique team with end-to-end expertise across technology, circuits, architecture, and applications,” he said. “The Stanford SystemX Alliance and the Carnot Chair of Excellence in NanoSystems at CEA-Leti enabled such a unique collaboration.”
About CEA-Leti (France)
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare; Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 60 startups and is a member of the Carnot Institutes network. This year, the institute celebrates its 50th anniversary. Follow us on www.leti-cea.com
|
Related News
- CEA-Leti Develops Novel Architecture for Keyword-Spotting (KWS) In Always-On, Voice-Activated Edge-AI Systems
- CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%
- Synthara targets breakthrough edge-AI chips with support from a global coalition of investors and R&D partners
- CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020
- CEA-LETI Develops Circuits for Neuromorphic Processors That Replace CMOS Transistor-Based Tcam Memory With Rram-Based Tcam Memory
Breaking News
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |