Optima Design Automation Launches with Focus on Next-Generation Semiconductor Functional Safety Tools
Revolutionary, High-Performance Optima Safety Platform Propels Range of High-Coverage Safety Solutions for Automotive ISO 26262 Fault Analysis
NAZARETH, Israel, Oct. 29, 2019 -- Optima Design Automation, a provider of advanced, unique semiconductor safety verification solutions based on a revolutionary new fault analysis technology platform, launched today at the DVCon Europe event in Munich. Optima enables dramatic improvements in semiconductor safety verification time and coverage for safety-critical applications such as automotive semiconductor devices.
Optima also announced the commercial release of its Optima Safety Platform with an initial range of automated solutions for hard-error (permanent) and soft-error (transient) fault analysis, coverage maximization and structural analysis. Based on 27 person-years of development, the Optima Safety Platform is already in evaluation at leading automotive semiconductor providers.
“Functional Safety Verification is a critical requirement for multiple industry sectors, spearheaded by the Automotive ISO 26262 Functional Safety Standard. However outdated and inadequate tooling has rendered the required safety analysis process inordinately time consuming and complex, making it hard and almost impossible to achieve ASIL-D on big and medium size chips,” remarked Jamil Mazzawi, Optima’s Founder and Chief Executive Officer. “Optima has engineered a fundamentally new technology that provides a fresh perspective for this development phase, shortening schedules from months to days while simplifying the analysis process and dramatically improving coverage, a key quality metric in ISO 26262, opening the path to ASIL-D.”
Founded in 2014 and headquartered in Nazareth, Israel, Optima is the recipient of a European Union Horizon 2020 Grant of 2.5 million euro, as well as other financing. This has allowed the company to retain leading semiconductor tool development and safety experts. A singular focus on automotive safety has led to the development of a proprietary fault analysis algorithms that forms the basis of semiconductor safety verification. By accelerating this process by orders of magnitude, Optima is positioned to become the leading safety solution vendor for automotive and other industry segments.
About Optima Design Automation
Optima Design Automation is the pioneer of next-generation fault analysis for automotive functional safety verification. The company’s product portfolio of automated solutions targets specific fault conditions, accelerating fault simulation stipulated by the ISO 26262 standard by orders of magnitude and enabling a dramatic increase in analysis coverage and ultimate device quality. Optima partners with leading automotive semiconductor vendors and EDA tool providers to create complete solutions that shorten safety critical device time-to-market. Co-funded by the European Union, the company is privately held and is based in Nazareth, Israel. For more information, visit Optima-DA.com.
|
Related News
- Optima Design Automation Announces TUV Certification of its Entire Safety Platform for ISO 26262 ASIL-D Functional Safety Verification
- Mobileye Adopts Key Synopsys Automotive Functional Safety Verification Solution to Enable ISO 26262 Compliance of its Next-Generation ADAS SoCs
- Optima Launches New IC Security Verification Solution
- Thalia launches next generation IP reuse tools for smarter, more agile semiconductor product development
- Synopsys and TSMC Collaborate for Certification on 5nm Process Technologies to Address Next-generation HPC, Mobile Design Requirements
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |