Distributed In-Chip Thermal Sensors Improve Multicore CPU Monitoring
By Nitin Dahad, EETimes (June 15, 2020)
With silicon geometries scaling to 5nm, thermal activity escalates and monitoring becomes critical to maintaining accuracy and reliability. To address this, Moortec, a provider of in-chip monitoring, telemetry and analytics technology, has introduced a distributed thermal sensor (DTS) on TSMC’s N5 process, which it claims is significantly smaller and more accurate compared to current in-chip thermal sensor solutions.
In order to meet performance requirements in systems-on-chips (SoCs) employing FinFET technology with higher gate densities (and hence power densities), designers are facing challenges in providing reliable, power efficient and speed optimized chip designs. Thermal activity can be unpredictable and if not monitored carefully can cause over-heating and excessive power consumption which in turn impacts device longevity. The ability to make precise thermal measurements beside or within CPU cores, high speed interfaces or highly active circuitry has become a mandatory requirement for devices used within a range of application areas.
The new DTS sensing fabric enables distributed, real-time thermal analysis, enabling up to 16 remote probe points in a silicon area that Moortec said is seven times smaller than some standard in-chip thermal sensors. At a recent press briefing, Stephen Crosher, CEO of Moortec, said, “The DTS is smaller in size and integrates within the chip. It can run off the core supply to do the sensing so can sense deeper within the chip — this is important for larger die sizes.”
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related News
- Moortec Launches New In-Chip Technology for Highly Distributed, Real-Time Thermal Analysis on TSMC N5 Process
- Synopsys Acquires In-chip Monitoring Solutions Leader Moortec
- Moortec's In-Chip Sensing Fabric Enables Deeply Embedded Monitoring of Dynamic Conditions for Picocom's Baseband SoC for 5G Small Cells
- Moortec's In-Chip Monitoring Subsystem Supports Uhnder in Groundbreaking Digital Automotive Radar-on-Chip
- Moortec Drives Optimised Performance & Increased Device Reliability on TSMC's N5 and N5P Process Technologies with its Complete In-Chip Monitoring Subsystem
Breaking News
- JEDEC® and Industry Leaders Collaborate to Release JESD270-4 HBM4 Standard: Advancing Bandwidth, Efficiency, and Capacity for AI and HPC
- BrainChip Gives the Edge to Search and Rescue Operations
- ASML targeted in latest round of US tariffs
- Andes Technology Celebrates 20 Years with New Logo and Headquarters Expansion
- Creonic Unveils Bold Rebrand to Drive Innovation in Communication Technologies
Most Popular
- Cadence to Acquire Arm Artisan Foundation IP Business
- AMD Achieves First TSMC N2 Product Silicon Milestone
- Why Do Hyperscalers Design Their Own CPUs?
- Siemens to accelerate customer time to market with advanced silicon IP through new Alphawave Semi partnership
- New TSN-MACsec IP core for secure data transmission in 5G/6G communication networks