Sondrel builds on 7nm design work to offer 5nm
Reading, UK -- February 4, 2021 -- As more and more foundries are offering 5nm, Sondrel has announced that it is supporting them with 5nm design work. This builds on it being one of the few design houses to have taped out a number of 7nm designs.
Graham Curren, Sondrel’s CEO and Founder, said, “We are one of the few design companies working on Samsung and TSMC at these advanced nodes. Firstly, because they are invariably extremely large and complex with billions of gates in a design, which requires a large team of extremely experienced design engineers. For example, we recently finished a design on 16nm that required over a hundred people working on it full time for over a year; a resource deployment that would typically only be available within a big Blue-Chip company. Secondly, we have expertise from several designs at 7nm that gives us a head start on the learning curve of understanding the requirements of 5nm.”
The key driving force to move to the 5nm node is the increase in performance due to the smaller distances increasing the operational speeds. For these leading-edge chips, this increase in performance can justify moving to a smaller node, especially alongside the decreased unit cost associated with reduction in the silicon real estate and the power demand being less for the same functionality.
An example of the design intricacies of these ultra-small nodes that needs to be understood and allowed for is that the resistance of the metal layers varies from the lower to the upper. In an ideal design, the lower, thinner layers with the higher resistance are used for local/short connections and the mid and high levels for longer distances. However, in the real world, there can be areas of congestion where all the high, fast levels are already fully utilised forcing the tool to use the lower slower layers, causing timing closure issues that have to be addressed in the design.
About Sondrel™
Founded in 2002, Sondrel is the trusted partner of choice for handling every stage of an IC's creation. Its award-winning define and design ASIC consulting capability is fully complemented by its turnkey services to transform designs into tested, volume-packaged silicon chips. This single point of contact for the entire supply chain process ensures low risk and faster times to market. Headquartered in the UK, Sondrel supports customers around the world via its offices in China, India, France, Morocco and North America. For more information, visit www.sondrel.com
|
Related News
- Sondrel completes a multi-billion transistor chip design at 5nm
- M31 demonstrates high-speed interface IP development achievements on TSMC's 7nm & 5nm process technologies
- Intel to offer RISC-V core in 7nm foundry
- Cadence Pegasus Verification System Certified for Samsung Foundry 5nm and 7nm Process Technologies
- Revenue per Wafer Climbs As Demand Surges for 5nm/7nm IC Processes
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |