BSC, Codeplay and SiFive help accelerate applications on RISC-V thanks to V-extension support in LLVM
July 1, 2021 -- The Barcelona Supercomputing Center (BSC) has been collaborating with Codeplay Software and SiFive to implement support for the RISC-V V-extension v0.10 in the LLVM compilation infrastructure. Thanks to this support, users of RISC-V will be able to take advantage of vector computation capabilities of the RISC-V V-extension through C/C++ intrinsics.
Senior Research Engineer Roger Ferrer Ibáñez led the BSC contribution, which was financed by the European Processor Initiative (EPI). He commented: ‘The open-source instruction set architecture (ISA) RISC-V offers an unparalleled opportunity for Europe to regain technology leadership. Our work for EPI aims to help build the thriving ecosystem necessary for widespread adoption of RISC-V across a range of sectors, including high-performance computing and automotive applications. The RISC-V V-extension plays a crucial role in enabling this adoption.’
‘RVV has been extensively welcomed in the world of accelerated compute systems,’ added Andrew Richards, founder and CEO of Codeplay. ‘We are already building a SYCL based ecosystem on top of this architecture to provide high-performance computing and artificial intelligence developers with familiar tools and route to rapid integration.’
In addition to implementing the RISC-V V-extension application programming interface (API) intrinsics for C, BSC, Codeplay and SiFive have implemented the foundation of CodeGen for Vector Length Specific (VLS) and Vector Length Agnostic (VLA) autovectorization for RISC-V in LLVM.
The following assets are available via GitHub:
- Support for the v0.10 V-extension specification https://github.com/riscv/riscv-v-spec/releases/tag/v0.10
- Support for the RVV C intrinsics: github.com/riscv/rvv-intrinsic-doc/tree/v0.10
- Implementation of the draft vector calling convention: github.com/riscv/riscv-elf-psabi-doc/pull/171
An example of the RISC-V V-extension can be found here: github.com/riscv/rvv-intrinsic-doc/blob/master/rvv_saxpy.c
This work complements other efforts within EPI to leverage vectors in widely used libraries; see, for example, the Fourier transform support in FFTW3, provided by Atos and SiPearl:
https://github.com/rdolbeau/fftw3/tree/riscv-v/simd-support
The European Processor Initiative has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 826647
|
Related News
- Brazil and Europe sign innovative project with RISC-V technology for HPC
- BSC presents Sargantana, the new generation of the first open-source chips designed in Spain
- BSC and Intel announce a joint laboratory for the development of future zettascale supercomputers
- SiFive and Barcelona Supercomputing Center Advance Industry Adoption of RISC-V Vector Extension
- BSC develops four open-source hardware components based on RISC-V, contributing to open, reliable and high-performance safety-critical systems for industry
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |