Syntiant's Deep Learning Computer Vision Models Deployed on Renesas RZ/V2L Microprocessor
Technology Collaboration Demonstrations on Display at the Renesas Booth During Embedded Vision Summit 2023
Irvine, Calif., May 19, 2023 – Syntiant Corp., a leader in edge AI deployment, today announced that the company’s commercially available deep learning computer vision (CV) models can now be deployed on the integrated DRP-AI (Dramatically Reconfigurable Processor) core on the Renesas RZ/V2L microprocessor (MPU), allowing developers to add intelligence to camera-based devices quickly and without an energy overhead.
Designed for edge devices and optimized to reduce latency and memory footprint, Syntiant’s hardware-agnostic deep learning models can be used for multiple vision-based applications such as object detection, face recognition, pose estimation, background subtraction and image classification. Using Syntiant’s Inference Software Development Kit (SDK), the company’s CV algorithms are integrated onto a variety of hardware platforms and support both legacy and modern compute architectures, as well as solve critical problems directly on embedded devices to reduce cost and enable faster time to market.
“Working to deploy a solution that integrates our compute-efficient vision models on the Renesas RZ/V2LMPU enables next-gen embedded-vision applications for cameras used in the home, smart cities, retail POS systems and autonomous robots, among so many other use cases,” said Mallik Moturi, chief business officer at Syntiant. “Our combined technologies enable developers to quickly and easily create intelligent, energy-efficient devices that can operate in a wide range of environments.”
The Renesas RZ/V2L MPU is equipped with a Cortex®-A55 (1.2GHz) CPU and built-in DRP-AI accelerator that provides both real-time AI inference and image processing for camera support such as color correction and noise reduction. The platform also has a 16-bit DDR3L/DDR4 interface and a built-in 3D graphics engine with Arm Mali-G31 and video codec (H.264). Integrating Syntiant’s solutions on the DRP-AI core supports up to five different vision-based classes to be run in parallel, offering exceptional functionality and efficiency.
“Our ongoing collaboration with the team at Syntiant now includes integrating their computer vision models into our DRP-AI accelerator core for enhanced AI vision processing,” said Shigeki Kato, vice president of the Enterprise Infrastructure Business Division at Renesas. “This joint solution delivers both high performance and low power consumption and is able to reduce processing time by pre-processing images to reduce workload on the CPU. This is ideal for highly complex imaging processing such as barcode scanning and iris detection and extraction.”
With its unique, adaptive neural network structure, Syntiant’s CV models dynamically scale with the complexity of input. Models are further optimized to verify performance and reliability for high performance across numerous industries, ranging from smart home to retail analytics.
Demonstrations of the Syntiant and Renesas RZ/V2L combined solution will occur May 22-24 at the Renesas booth (#403) during the 2023 Embedded Vision Summit at the Santa Clara Convention Center. Contact info@syntiant.com for sales information.
About Syntiant
Founded in 2017 and headquartered in Irvine, Calif., Syntiant Corp. is a leader in delivering hardware and software solutions for edge AI deployment. The company’s purpose-built silicon and hardware-agnostic models are being deployed globally to power edge AI speech, audio, sensor and vision applications across a wide range of consumer and industrial use cases, from earbuds to automobiles. Syntiant’s advanced chip solutions merge deep learning with semiconductor design to produce ultra-low-power, high performance, deep neural network processors. Syntiant also provides compute-efficient software solutions with proprietary model architectures that enable world-leading inference speed and minimized memory footprint across a broad range of processors. The company is backed by several of the world’s leading strategic and financial investors including Intel Capital, Microsoft’s M12, Applied Ventures, Robert Bosch Venture Capital, the Amazon Alexa Fund and Atlantic Bridge Capital. More information on the company can be found by visiting www.syntiant.com
|
Related News
- Inuitive Adopts Synopsys' Embedded Vision Processor IP to Accelerate Computer Vision and Deep Learning Algorithms
- Syntiant Adopts Movellus' Clock Network for its Low-Power NDP120 Deep Learning Processor
- CEVA Computer Vision, Deep Learning and Long Range Communication Technologies Power DJI Drones
- SigmaStar Deploys CEVA Computer Vision and Deep Learning Platform in its Intelligent Camera SoC
- CEVA-XM6 Computer Vision and Deep Learning Platform Honored by Vision Systems Design 2018 Innovators Awards Program
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |