Imec unveils CMOS-based 56Gb/s zero-IF D-band beamforming transmitter, featuring superior output power and energy efficiency
Designed to support next-generation, short-range, high-speed wireless services at frequencies above 100GHz – from wireless fail-safes in data centers to extended reality (XR) solutions
LEUVEN (Belgium), JUNE 17, 2024 — At this week’s IEEE RFIC Symposium, imec – a world-leading research and innovation hub in nanoelectronics and digital technologies – presents a state-of-the-art CMOS-based beamforming transmitter for D-band wireless applications. The transmitter features exceptional output power and energy efficiency while supporting data rates of up to 56Gb/s per channel. It is a key component of a 4-way beamforming transceiver chip currently being developed by imec’s researchers. With this technology, they aim to support the deployment of next-generation, short-range wireless services at frequencies above 100GHz.
Next-generation short-range wireless applications, boasting data rates in the tens of gigabits per second, usher in an era of opportunity. Whether it's data centers in search of wireless fail-safe mechanisms, fixed wireless access (FWA) deployments, or wireless hotspots enabling extended reality (XR) experiences, they are all converging on the sub-THz bands between 100 and 300GHz.
The ample bandwidth offered by these frequencies is just one of the essential features. In addition, their shorter wavelengths allow for smaller antennas, enabling increasingly compact access points and handheld devices. Finally, the high sensing resolution will prove invaluable in future applications (gaming, smart buildings, Industry 5.0, ...) where communication and sensing are intertwined.
“Yet, when CMOS technology ventures into the realm of 100GHz and beyond, it encounters various obstacles. The first challenge is to achieve sufficient output power to overcome the higher pathloss at these frequencies. It’s also much more difficult to realize wideband circuitry with good dynamic range and acceptable power consumption. These challenges are at the heart of our novel CMOS-based D-band beamforming transmitter,” explained Joris Van Driessche, program manager at imec.
A high data rate, low power CMOS-based D-band beamforming transmitter
Imec’s transmitter, part of a 4-way beamforming transceiver architecture, operates in the 120-145GHz frequency range. Designed using a 22nm FD-SOI process, each transmitter channel occupies an area of 1.17x0.3mm² and consumes 232mW of power. And with a Pout of 3dBm for 16QAM modulation and 2dBm for 64QAM modulation, imec’s implementation stands out as a top performer among CMOS D-band transceivers in terms of transmitted output power.
By implementing beamforming in the local oscillator circuit to steer high-gain narrow beams in specific directions, in combination with a zero-IF transceiver architecture, imec's transmitter reduces the number of components in the signal path. As such, the dynamic range of the signal path is preserved, and a wide RF bandwidth can be achieved. In addition, imec's design features a wideband analog baseband section covering channel bandwidths up to 14GHz, enabling high data rates (up to 56Gb/s per channel) across a broad frequency range.
Joris Van Driessche: “And yet another unique feature of our chip is its completeness. Unlike competing solutions, ours seamlessly integrates LO beamforming and a full analog baseband section across all four channels, along with the complete RF chain and beamforming functionality. To our knowledge, this is a significant first.”
Inviting partners to explore the technology’s potential
“The paper presented at the IEEE RFIC Symposium focuses on the results we’ve achieved with our new beamforming transmitter. However, our research has since led to the development of a complete 4-way beamforming transceiver chip, which is currently undergoing further characterization. With this chip, we aim to build a D-band wireless system that will allow partners to experiment with beamforming technology, joint communication and sensing (JC&S) applications, and more – while demonstrating the viability of CMOS technology for next-generation, short-range wireless applications at frequencies above 100GHz,” concluded Van Driessche.
This research is part of imec’s Advanced RF program, which aims to enable next-generation, high-data-rate wireless and high-resolution sensing applications by addressing challenges from the device level, up to the system level. For more info about the program and to enquire about collaboration opportunities, please visit this page.
|
Related News
- Cadence Unveils Millennium Platform - Industry's First Accelerated Digital Twin Delivering Unprecedented Performance and Energy Efficiency
- Renesas Develops Bluetooth Low Energy RF Transceiver Technologies that Simplify Board Design, Reduce Circuit Size and Increase Power Efficiency
- NSITEXE unveils A New Product AI accelerator "ML041", realizes high power efficiency
- Dolphin Design unveils SPIDER, a turnkey platform to accelerate the design of energy efficient power management systems
- Toshiba Unveils 130nm FFSA Development Platform Featuring High Performance, Low Power and Low Cost Structured Array
Breaking News
- Breker RISC-V SystemVIP Deployed across 15 Commercial RISC-V Projects for Advanced Core and SoC Verification
- Veriest Solutions Strengthens North American Presence at DVCon US 2025
- Intel in advanced talks to sell Altera to Silverlake
- Logic Fruit Technologies to Showcase Innovations at Embedded World Europe 2025
- S2C Teams Up with Arm, Xylon, and ZC Technology to Drive Software-Defined Vehicle Evolution
Most Popular
- Intel in advanced talks to sell Altera to Silverlake
- Arteris Revolutionizes Semiconductor Design with FlexGen - Smart Network-on-Chip IP Delivering Unprecedented Productivity Improvements and Quality of Results
- RaiderChip NPU for LLM at the Edge supports DeepSeek-R1 reasoning models
- YorChip announces Low latency 100G ULTRA Ethernet ready MAC/PCS IP for Edge AI
- AccelerComm® announces 5G NR NTN Physical Layer Solution that delivers over 6Gbps, 128 beams and 4,096 user connections per chipset
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |