New MIPI SDCA Specification Simplifies Audio Software Architecture and Driver Requirements, Optimizing Integration of Audio Devices into Open Host Platforms
MIPI SDCA v1.0 standardizes essential audio functionality to enable native OS support of SDCA-enabled MIPI SoundWire devices
BRIDGEWATER, N.J.-- July 10, 2024 --The MIPI Alliance, an international organization that develops interface specifications for mobile and mobile-influenced industries, announced the release of MIPI SoundWire Device Class for Audio (MIPI SDCA) v1.0. The new specification enables standardized mechanisms to interact with host-controllable audio devices, such as microphones and amplifiers, connected via a MIPI SoundWire interface. MIPI SDCA, which leverages the MIPI Discovery and Configuration Specification for SoundWire (MIPI DisCo Specification for SoundWire), simplifies audio software architecture and driver requirements, significantly optimizing the integration of audio devices into host platforms.
Integration of “smart” host-controllable audio devices within “open” host platforms such as laptops and tablets is typically challenging and cumbersome; different devices often lack consistency in the basic functionality they provide, how they are controlled by the host, and how they enable discovery of features. To address these challenges, MIPI SCDA defines a standard MIPI SoundWire device class for host-controllable audio devices. The specification provides a standard framework for system software and native OS drivers to determine the function of SDCA-enabled SoundWire audio devices, the properties of their control interfaces (addressing, access mode, access layer, deferred access and interrupts), and reset properties.
Utilizing MIPI SDCA within both host and peripheral audio devices enables the development and use of system firmware and generic device class drivers, rendering software reusable across multiple audio devices from multiple vendors. In conjunction with the introduction of the new MIPI specification, audio device capabilities can be seamlessly reported to the host via the framework defined in MIPI DisCo Specification for SoundWire, enabling native operating system (OS) and driver support, improved management of power consumption and enablement of advanced audio features.
Both MIPI SDCA Version 1.0 and MIPI DisCo Specification for SoundWire, which has recently been updated to Version 2.1, are available for download.
“SDCA defines a standard SoundWire device class, enabling system designers to develop generic class drivers for audio devices conforming to that class. This significantly simplifies and streamlines platform development," said Sanjiv Desai, chair of MIPI Alliance. “By standardizing essential audio device features, control and discovery mechanisms, enabling native OS support and eliminating the need for bespoke drivers and software, SDCA allows audio components from different vendors to be cost-effectively integrated to differentiate host-platform capabilities for varied use cases and customer desires.”
Development of SDCA included participants from all aspects of the audio ecosystem, including OS vendors, system-on-chip (SoC) vendors, hardware and software intellectual property (IP) suppliers, and hardware vendors. MIPI Software Working Group members participating in the specification’s development include Advanced Micro Devices, Inc.; Analog Devices, Inc.; Cirrus Logic; Dell Technologies; Everest Semiconductor Co., Ltd.; Intel Corporation; Microsoft Corporation; onsemi; Qualcomm Incorporated; Realtek Semiconductor Corp.; Texas Instruments Incorporated; and others.
About MIPI Alliance
MIPI Alliance (MIPI) develops interface specifications for mobile and mobile-influenced industries. There is at least one MIPI specification in every smartphone manufactured today. The organization has over 375 member companies worldwide and more than 15 active working groups delivering specifications within the extended mobile ecosystem. Members of the organization include handset manufacturers, device OEMs, software providers, semiconductor companies, application processor developers, IP tool providers, automotive OEMs and Tier 1 suppliers, and test and test equipment companies, as well as camera, tablet and laptop manufacturers. For more information, please visit www.mipi.org.
|
Related News
- MIPI Alliance Releases MIPI CCS, a New Specification that Streamlines Integration of Image Sensors in Mobile Devices
- MIPI Alliance Updates its MIPI SLIMbus Specification to Advance Audio System Performance in Mobile and Mobile-Influenced Devices
- MIPI Alliance Introduces MIPI SoundWire, a Comprehensive Audio Interface for Mobile and Mobile-Influenced Devices
- MIPI Alliance Announces the Formation of a New Birds of a Feather Group to Investigate Software Integration of Hardware Devices
- MIPI Alliance Enhances its Battery Interface Specification with "Smart Battery" Capabilities for Mobile Devices
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |