TSMC delivers first 0.18-micron Bluetooth IC to startup Zeevo
TSMC delivers first 0.18-micron Bluetooth IC to startup Zeevo
By Semiconductor Business News
January 16, 2001 (11:42 a.m. EST)
URL: http://www.eetimes.com/story/OEG20010116S0012
HSINCHU, Taiwan--Taiwan Semiconductor Manufacturing Co. Ltd. here today announced delivery of its first 0.18-micron IC for Bluetooth wireless systems to silicon foundry customer Zeevo Inc., a fabless chip startup in Santa Clara, Calif. TSMC said the 0.18-micron mixed-signal CMOS device integrates radio-frequency (RF) circuits with analog and digital baseband functions on a single chip. Zeevo--founded in 1999 and formerly called TelenComm Inc.--said it expects to announce Bluetooth products, software, and full development support later in the first quarter of 2001. The Silicon Valley startup aims to leverage TSMC's new 0.18-micron RF-CMOS process to take a lead in system-on-chip (SoC) designs for "enhanced wireless applications, such as Bluetooth," said Anil Aggarwal, chief executive officer of Zeevo. The market for Bluetooth chips recently began to accelerate, according to analyst Joyce Putscher at Cahners In-Stat Group in Scottsdale, Ariz. "By 2005, this semiconductor market opportunity will approach $5 billion," she said. In Taiwan, TSMC plans to be a major supplier of foundry services for Bluetooth and other wireless chips. TSMC is already producing devices for these markets with 0.25- and 0.35-micron mixed-signal RF-CMOS technology, said John Chern, director of logic technology product marketing for the world's largest pure-play foundry company. The addition of a new 0.18-micron process provides chip engineers with multiple technologies for Bluetooth applications, said Chern, and "we're enabling designers to enter the wireless communications markets faster and with next-generation technology." TSMC's 0.18-micron process is optimized for an NMOST fT of 62 GHz, said the company. The high frequency operation is coupled with a deep n-well option to provide a noise transmission reduction of 25 dB, which is less than traditional twin-well processes, said TSMC. In the 0.18-micron process also provides a high performance metal capacitor (Mi M), a thick metal inductor, and multiple threshold voltage (Vt) devices that enable more flexibility and higher integrity for RF designs, said the foundry company.
Related News
- Mysticom Delivers First 10/100 Mbps Ethernet PHY Core On TSMC's 0.18-Micron Process
- Low Power Hard Core Diamond Standard Processor for TSMC 0.18-micron Technology Available Through Global Unichip
- Kilopass Completes IP Qualification for TSMC's 0.18-micron CMOS Process
- Most Chinese IC design at 0.18-micron, survey finds
- TSMC 0.18-Micron High-Voltage Technology Goes to Volume Production
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |