|
|||||||||||||||
Implementing LTE on FPGAs
Here's a review of the LTE algorithms and a practical implementation on a Xilinx FPGA. The reference design is tested using multiple video stream with varying encoding rates.
By Rob Payne, Xilinx dspdesignline.com (February 06, 2009) The next generation of the 3GPP wireless standard is called long-term evolution (LTE). It provides a leap in performance and a complete move to packet-based processing. In the physical (PHY) level of the LTE specification, specific challenges exist when dealing with higher data throughput rates, as well as the move to OFDM (orthogonal frequency-division multiplexing) for transmission. Xilinx has developed – or is in the process of developing – several new or revised DSP LogiCORE solutions to meet the demands of the new specification. With such blocks it is critical not only to verify them as stand-alone blocks, but also to validate them in real systems with real-world data. The Xilinx 3GPP downlink reference design provides this validation, as well as providing a reference to customers about how to use the blocks. The higher data rate in LTE places increased processing demands on all parts of the system: increased DSP hardware processing in the baseband, increased software processing to implement the higher layers of the UMTS protocol stack, and increased I/O communication bandwidth to accept packets and pass data to remote radio-heads. In this article, I'll review some of the new features of the LTE specification and how Xilinx Virtex-5 FXT devices address the increased processing demands of LTE through its tight integration of microprocessor subsystem, DSP-enhanced FPGA fabric, and high-speed communication links.
|
Home | Feedback | Register | Site Map |
All material on this site Copyright © 2017 Design And Reuse S.A. All rights reserved. |