|
|||||||||||||||
Resets in FPGA & ASIC control and data pathsMufaddal Saifee (Provino Technologies) & Jaymin Patel (eInfochips) Reset is an important mechanism to bring a digital system into a known state. The need for reset is governed by the system design and application, and various data and control paths are designed to use a reset signal. Flip-flops in the control path should have reset parameters to bring the system to a known state, while one can usually do without reset in the data path. Let’s discuss various use cases of resets in ASICs and FPGAs. Introduction Various data path systems are designed to synchronize with inputs, process them, and provide output. For such designs, if all the unused states are waiting for acquiring the sync state, then the design can do without ever being reset. For designs where the state machine logic has been optimized during synthesis by avoiding logic reduction, resets are a must to prevent the design from starting in a random state. There are various scenarios apart from the device reboot where the resets are required in real-world designs. Some likely scenarios include:
To achieve better performance, designs nowadays have their data pipelined through chains of Flip-Flops. For such designs, the usage of reset can be eliminated in the pipelined Flops to achieve better area utilization and performance. Choosing reset usage and its strategies in ASIC/FPGA designs require many design considerations like whether every Flip-Flop will require a reset, whether to use a synchronous reset or asynchronous reset, how the reset tree will be structured and buffered, how to verify timing of reset tree, how test scan vectors are applied to check functionality of reset and how reset is handled in multi clock domain designs. In this article, we will see the reset usage in Data and Control path in ASIC and FPGA. We will also see how FPGA components like shift registers, Block RAM, Distributed RAM, and DSP Slices can be used efficiently with proper use of reset.
|
Home | Feedback | Register | Site Map |
All material on this site Copyright © 2017 Design And Reuse S.A. All rights reserved. |