|
||||||||||
Three Design Aspects you shouldn't miss while building an NB-IoT Protocol StackBy Nigel Dixon, T2M Abstract Low Power Wide Area Network (LPWAN) is critical in connecting long range IoT devices across all industries. NB-IoT from 3GPP has become a leading LPWAN connectivity protocol. It is very important that the design aspects of the NB-IoT device protocol stack ensure low module cost and low energy consumption. This is required to match the industry expected module costs. This paper outlines some of the NB-IoT Protocol stack specification flexibilities and generic design aspects that are to be considered to meet the above requirements, especially with reference to LTE. Introduction NB-IoT from 3GPP, has become a leading LPWAN connectivity protocol compared to existing proprietary technologies, even though it is relatively new (the first specifications were ready only by June 2016). China and many European countries have started the commercial deployments already and the same is expected to grow many fold in 2018-2019. NB-IoT has a clear roadmap as part of 5G standardization and 5G networks are expected support to huge number NB-IoT devices. NB-IoT Specification Flexibility NB-IoT is simpler compared to LTE and the technology provides many options to make a simpler design. So if you have a LTE based modem design and are trying to optimize the same for NB-IoT, expect to make many design changes. Waveform: NB-IoT has a much simpler waveform unlike LTE and will consume lesser power. A 200 kHz NB-IoT frontend and digitizer offers reduced complexity of analog-to-digital (A/D) and digital-to-analog (D/A) conversion, buffering, and channel estimation. Fig1: Time Multiplexing between NB-IoT downlink Physical Channels and Signals Source: https://arxiv.org/ftp/arxiv/papers/1606/1606.04171.pdf Half Duplex: Since NB-IoT is half duplex, Unlike LTE, these NB-IoT physical channels and signals are primarily multiplexed in time. This means the same RF could be used for Tx and Rx. From a design perspective, this enables the baseband to have common signal chain for Rx and Tx at the baseband. The same buffers could be shared between Tx & Rx. There’s an upper limit on the duration of the continuous transmission imposed by the protocol, which allows to have a fixed pre-allocated TX buffer. It is suggested to let it have the same length as the RX buffer. Downlink Data Reception Timings: In case of NB-IoT, Broadcast channel spacing is 10ms, Scheduling Delay from DCI decoding to Data decoding is ≥ 4 ms and from Data decoding to ACK/NACK transmission: ≥ 12 ms. Fig2: Timing relationship Source: https://arxiv.org/ftp/arxiv/papers/1606/1606.04171.pdf All the physical layer procedures and transmission and reception of physical channels occur in sequential manner. Scheduling Timing intervals mentioned above, allow spreading out processing load over a number of consecutive subframes. This enables the MIB decoding to be spread over 10ms and the same is the case for SIB1 and SIB2. In the uplink for example, there are 11 ms to decode 4xDCI and modulate at least the first subframe of NPUSCH or 15 ms to decode 4xDCI and modulate all the scheduled NPUSCH subframes. NPDCCH (Narrowband Physical Downlink Control Channel) used for DCI (Downlink Control Indicator) messages (carrying UL Grant, DL scheduling and acknowledge), responding to RACH requests, etc. may carry different messages, may appear in different OFDM symbols, may have different number of repetitions. During the attach procedure those parameters are not known to device, so it must try several hypotheses to find out the correct allocation. This makes NPDCCH decoding one of the most computation-intensive procedures (it does a lot of Viterbi decoding). So the platform (MCU/DSP) should have specific instruction sets or accelerators for the same. The other computational intensive process could be the FFTs (Fast Fourier Transforms). The platform is expected to have the have specific instruction sets or accelerators for FFTs too. NB-IoT Design Aspects
Solution Approaches There are two solutions generally adopted for NB-IoT Protocol stack.
MCUs with scalable architecture could be used to integrate RF and all the protocol layers on to the same MCU. This approach also provides the flexibility to enhance the protocol as it evolves. The two-chip solution RF & L1 are implemented in DSP or Hardware while L2/L3 and the application will be implemented in a lighter MCU. This makes the solution more cost effective. The upgradeability for the new releases of this evolving technology could be a concern in case of a HW implementation, hence a DSP approach could be a better option till the technology reaches a mature level of deployment. Our solution We offer a low footprint Software solution keeping the above aspects in mind, where the L3/L2/L1 can be easily ported to any MCU/DSP with scalable architecture and can be integrated with Partner RF solutions. In a two-chip solution, The L3/L2 could be on an MCU and the L1 can be integrated with RF on a DSP or HW. (The L1 protocol stack is also available in RTL so that it could be put into HW form). Even with the HW form, we still give L1 control and configuration from SW, so that there is flexibility. Conclusion With NB-IoT rapidly becoming a leading LPWAN connectivity protocol, its protocol stack design should make use of the flexibility provided by the specification as well as the optimizations provided by the platforms to ensure a Low Cost, Low Power NB-IoT Module. LTE based architectures may need to be adapted to provide the expected level of cost and power benefits to NB-IoT modules .
|
Home | Feedback | Register | Site Map |
All material on this site Copyright © 2017 Design And Reuse S.A. All rights reserved. |