|
|||||
BIST versus ATPG -- separating myths from reality
BIST versus ATPG -- separating myths from reality There is a rapidly growing interest in the use of structural techniques for testing random logic. In particular, much has been published on new techniques for on-chip compression of automatic test pattern generation (ATPG) in order to reduce ever-growing pattern sizes. These techniques -- some oddly named using the term built-in self test (BIST) -- do indeed represent improvements on existing ATPG methodologies. However, they all fall short in addressing the real testing needs of today's complex designs. This article attempts to explain today's real testing requirements and how they are addressed using a truly embedded at-speed logic BIST methodology. Common scan architecture In the traditional ATPG flow, deterministic test patterns are pre-generated using a gate-level representation of the design netlist. These patterns are then stored in tester memory and scanned into the circuit using a limited number of parallel scan chains. The number of scan chains is limited by such factors as available chip I/O, available tester channels and on-chip routing congestion. Commercially available logic BIST solutions and the newly introduced ATPG-based compression approaches build upon the scan infrastructure by adding an on-chip pattern generator that feeds the scan chains, and an on-chip result compressor that compresses the scanned out responses of all patterns into a final signature. This architecture allows for a much larger number of parallel scan chains, as they no longer have to be routed to chip pins. Where similarities end In comparison, the logic BIST approach uses an on-chip pseudo-random pattern generator (PRPG). Once initialized, the PRPG independently creates any number of random patterns to be scanned into the parallel scan chains. No data is needed to be stored on the tester. There are a number of myths that have surprisingly developed on the advantages of using ATPG related compression approaches versus leading logic BIST solutions. The most important of these are addressed next. Myth #1: ATPG achieves better fault coverage than logic BIST Empirical evidence shows that when roughly 1 test point is added per 1,000 gates (about 1 percent overhead), stuck-at fault coverages comparable to those achieved with deterministic ATPG can be obtained with a reasonable number of random patterns (typically in the 50K to 100K range). Test points also help reduce the number of required deterministic patterns. Despite the above comparisons, chip quality really depends on physical defect coverage and not simply coverage of stuck-at modeled faults. A number of studies have shown that true defect coverage is proportional to the number of times each modeled fault is detected. These studies show that the large number of random patterns used by logic BIST results in significantly greater defect coverage than that achieved by the limited number of deterministic patterns used by ATPG approaches (see figure 1). Figure 1 - Defect coverage comparison Myth #2: ATPG approaches support at-speed test The first is often referred to as the "launch-from-shift" technique. In this technique, after the first pattern is scanned in, the second pattern is obtained by performing one more shift, then toggling the scan-enable pin and pulsing the clock to capture the results within one at-speed clock period. However, use of this technique requires that the scan-enable signal operate at full speed. The tester must also be capable of providing very accurate pin-to-pin timing between the scan enable pin and one or more clock pins (see figure 2). Figure 2 - Timing requirements for "launch from shift" scan The second at-speed test technique, often called "launch-from-capture" or "double-capture," removes the at-speed scan-enable requirement. In this technique, the second pattern is obtained from the circuit response to the first pattern. However, this results in the need for sequential ATPG, which is not only much more CPU intensive than combinational ATPG, but typically results in an unacceptably large number of test patterns. In contrast, the leading commercially available logic BIST solution provides true at-speed testing. Field proven techniques provide on-chip support for at-speed scan-enable signals and multiple asynchronous clocks. Other field-prove n techniques provide on-chip support for testing logic at clock domain boundaries. No tester pin-to-pin timing requirements of any kind are required. Myth #3: ATPG approaches easily scale with growing chip sizes In some cases, cores can be dealt with separately by fully isolating them with scan cells. However, the resulting overhead is typically prohibitive. Even the pattern volume reductions obtainable with the new ATPG compression approaches represent only in a one-time improvement. As design sizes are growing exponentially, test pattern volumes will once again become a problem. With commercial logic BIST, hierarchical cores are made self-testable independently of other cores (see figure 3). Some patented techniques allow isolation of the core during test using little or no overhead. Design changes in one core do not affect the logic BIST capabilities inserted in other cores. In particular, a core with logic BIST can be reused "as-is" without any modifications to the existing logic BIST capabilities.
Figure 3 - BIST added to each core Other advantages to logic BIST Another major point is that Logic BIST can also be used for dynamic burn-in. Parallel execution of logic BIST on all devices on a burn-in board can be achieved using only the low-speed IEEE 1149.1 interface for board-level access. Pre burn-in tests can even be applied using the burn-in board, eliminating a test insertion. Conclusion Stephen Pateras is director of engineering for manufa cturing test software at LogicVision Inc. He has over 10 years of extensive background in system design, ASIC design, operating systems, DFT, BIST, and fault tolerance. Prior to LogicVision, Pateras worked for IBM as a team leader in the system technology and architecture divisions, responsible for the development and execution of test strategies for the CMOS mainframe design project.
|
Home | Feedback | Register | Site Map |
All material on this site Copyright © 2017 Design And Reuse S.A. All rights reserved. |