|
|||||
LSI Logic prepares serializer/deserializer for future I/O
LSI Logic prepares serializer/deserializer for future I/O SAN MATEO, Calif. LSI Logic Corp. is asserting its strengths in the high-speed I/O area with the release this week of a serializer/deserializer part aimed at the yet-unfinished Infiniband and 10-Gigabit Ethernet standards. The SpeedBlazer family of chips will combine four of LSI Logic's GigaBlaze transceiver cores, providing four channels for data transmission. LSI Logic (Milpitas, Calif.) is positioning itself a major contender in components for physical-layer communications, claiming to provide a wider range of parts than competitors Vitesse Semiconductor Corp. and Advanced Micro Circuits Corp. "The tough part is developing your serdes [serializer/deserializer]. We've had that all along" in the form of the GigaBlaze core, said Marc Miller, director of product marketing for LSI's Internet Computing Division. The first chip in the SpeedBlazer family will be the GQ-100, incorporating four GigaBlaze cores side by side. For data transmission, each channel takes in a 10-bit-wide feed, runs it through an 8-bit/10-bit decoder and sends the data through GigaBlaze's differential transmitter. The part has reached speeds beyond 1 Gbit/second in the lab and will be stretched to 3.125 Gbits/s when the product samples in the fourth quarter. In receiving data, the GQ-100 adds an alignment FIFO as a way to ensure meeting the alignment requirements of the Infiniband standard. In addition to handling the upcoming 1-, 4- or 12-bit Infiniband standards, the GQ-100 is also being groomed for a 10-Gigabit Ethernet role, Miller said. In this case, the part would operate at the 3.125-Gbit/s speed, sending four streams of data 8 bits wide the product of all that being 10 Gbits/s. To handle 10-Gbit Ethernet over fiber, the part will require an external optic module. Depending on how 10-Gigabit Ethernet is defined, the module will produce either four streams of 2.5 Gbits/s each or a single 10-Gbit/s feed. Either way, LSI probably will not develop the optic module on its own, because the part will require processes other than CMOS.
|
Home | Feedback | Register | Site Map |
All material on this site Copyright © 2017 Design And Reuse S.A. All rights reserved. |