|
||||||||||
Jazz Semiconductor's Optimized SiGe Technology Targeted at Replacing GaAs Components in Growing Millimeter Wave and Cell Phone Markets
NEWPORT BEACH, Calif. -- August 18, 2009 – Jazz Semiconductor, Inc., a Tower Group Company (NASDAQ: TSEM, TASE: TSEM), today announced it is targeted at replacing GaAs components in high growth markets such as millimeter wave and front-end components of cellular phones with its enhanced SiGe BiCMOS process, IP and design enablement offerings. SiGe provides significant integration and cost advantage over GaAs, enabling products in the emerging markets of automotive collision avoidance, phased-array radar, and HDTV wireless distribution as well as established markets such as optical network and cellular phone front-end components. Jazz is working with more than half of the top 10 IC providers in several of these market segments on SiGe solutions. According to data from Strategy Analytics, the combined millimeter wave and FEM market is estimated to grow from $400 million in 2009 to over $750 million in 2012, a CAGR of over 23%, outpacing most other sectors in the semiconductor industry. The company’s process technology includes a SiGe transistor with demonstrated performance of up to 200GHz as well as noise and power performance that is competitive with GaAs while offering as much as 40% lower die cost. Also included are CMOS options to enable mixed-signal and digital functions on the same chip further reducing cost of the complete system. To facilitate the transition from GaAs to SiGe-based designs, Jazz partnered with Agilent to provide a SiGe design kit in ADS (Advanced Design System), a leading design platform for GaAs-based products, speeding time-to-market for customers targeting applications up to and beyond 60 to 77GHz. An example of a successful transition from GaAs to SiGe is the recently announced collaboration between Jazz and UCSD to develop a 2-antenna quad-beam 11-15 GHz phased array receiver that enables high-performance phased arrays for satellite communications by integrating many functions on the same silicon chip and replacing 8 GaAs ICs, drastically lowering the cost of phased array assembly. First time success was achieved using Jazz’s 0.18-micron SiGe BiCMOS process and its own proprietary models, kit and DIRECT MPW (Multi-project Wafer) program. About Tower Semiconductor, Ltd. and Jazz Semiconductor, Inc.
|
Home | Feedback | Register | Site Map |
All material on this site Copyright © 2017 Design And Reuse S.A. All rights reserved. |