Develop FFT apps on low-power MCUs
Embedded Systems Programming
Oct 19 2005 (14:51 PM)
Now that low-power microcontrollers are starting to include peripherals that were formerly the reserve of larger microprocessors, ASICs, or DSPs, you've got new opportunities to compute complex algorithms at low power levels. This article describes a Fast Fourier Transform (FFT) application developed using a low-power microcontroller that includes a single-cycle hardware multiplier. The application computes, in real-time, the spectrum of an input voltage (VIN in Figure 1). To accomplish this, an analog-to-digital converter (ADC) samples VIN and transfers the sample data to the microcontroller. The microcontroller then performs a 256-point FFT on the samples to obtain the spectrum of the input voltage. For testing purposes, the microcontroller calculates the magnitude of the spectrum and transfers the results to a PC where they are displayed (again in real-time).
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics