Develop FFT apps on low-power MCUs
Embedded Systems Programming
Oct 19 2005 (14:51 PM)
Now that low-power microcontrollers are starting to include peripherals that were formerly the reserve of larger microprocessors, ASICs, or DSPs, you've got new opportunities to compute complex algorithms at low power levels. This article describes a Fast Fourier Transform (FFT) application developed using a low-power microcontroller that includes a single-cycle hardware multiplier. The application computes, in real-time, the spectrum of an input voltage (VIN in Figure 1). To accomplish this, an analog-to-digital converter (ADC) samples VIN and transfers the sample data to the microcontroller. The microcontroller then performs a 256-point FFT on the samples to obtain the spectrum of the input voltage. For testing purposes, the microcontroller calculates the magnitude of the spectrum and transfers the results to a PC where they are displayed (again in real-time).
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)