Compiling FPGA netlists for formal verification
02/06/2006 9:00 AM EST, EE Times
Multi-million gate system-on-a–chip (SoC) designs easily fit into today’s FPGAs. Due to the ever increasing demand for more speed, less area, and less power, the transformation of a customer’s RTL description into a bitstream format that can program the FPGA is increasingly complicated. This in turn increases the demand for verifying the design transformations.
Even though FPGAs are reprogrammable, an error detected late in the design cycle, or even after the board has gone into production, can still be very expensive. In addition, some FPGA vendors offer migration to structured ASICs, in which a fabricated design cannot be reprogrammed. Therefore, it is even more important for designs targeted towards structured ASIC device families that implementation errors are caught early in the development phase.
For all of the above reasons, customers want to verify the functional correctness of the RTL-to-bitstream design transformations. Formal methods are becoming increasingly popular in the FPGA design methodology, as they offer several advantages over the traditional method of vector-based simulation. Some of these advantages are shorter runtime, better functional coverage, and no need for test vectors.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)