Simulating and debugging multicore behavior
Feb 28 2006 (12:00 PM), Embedded Systems Design
Multicore microprocessor chips are on their way, and they're going to further complicate the task facing embedded software developers. Of course, multiprocessor systems aren't new. Chips with multiple heterogeneous (different) processors, such as a RISC and a DSP, have been around for years. In fact, nearly every modern cell phone contains just such a pair.
What's new is that the number of microprocessors is dramatically increasing in order to handle the equally dramatic increase in system-on-a-chip (SoC) software content, and that these processors generally share cache memory. This approach, known as shared-memory multiprocessing or symmetric multiprocessing (SMP), adds a whole new level of complexity because software will normally need to be dynamically partitioned across the processors. Traditional static partitioning won't work.
Moreover, design teams are frequently using parallel processing, or true concurrency, to meet the system's performance specification within its power constraints. The combination of SMP and true concurrency further exacerbates the software development, validation, and debug problems to the point where traditional software-development approaches are breaking.
In this article I'll discuss these trends, explore their development problems, and describe a behavior-accurate simulation that you can use to solve them.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Creating, Simulating, and Debugging SVA Code Outside of the Traditional Design/Verification Environment
- Multi-core: A new challenge for debugging
- Debugging a Shared Memory Problem in a multi-core design with virtual hardware
- Techniques for debugging an asymmetric multi-core application: Part 2
- Multi-core multi-threaded SoCs pose debugging hurdles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)