How to use UML in your SoC hardware/software design: Part 3
Jul 31 2006 (9:30 AM), Embedded.com
Once you have captured the semantics of your SoC application model completely in a neutral form (see Part 2), you are now ready to compile it into software and silicon. Only the semantics of the modeling language matter for translation purposes.
If a class is represented graphically as a box, or even as text, this is of no consequence. The UML is just an accessible graphical front-end for those simple elements.
When you build a 'class' such as CookingStep in a microwave oven, that represents a set of possible cooking steps you might execute, each with a cooking time and power level.
Similarly, when you describe the lifecycle of a cooking step using a state machine, it follows a sequence of states as synchronized by other state machines, external signals, and timers. And in each state, we execute some functions. All of this structure and behavior, for the entire model, is captured as data in the metamodel.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- How to use UML in your SoC hardware/software design: Part 4
- How to use UML in your SoC hardware/software design: Part 2
- How to use UML in your SoC hardware/software design: Part 1
- Hardware/software design requirements planning: Part 3 - Performance requirements analysis
- How to Turbo Charge Your SoC's CPU(s)
New Articles
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics