How to accelerate algorithms by automatically generating FPGA coprocessors
By Glenn Steiner, Kunal Shenoy, Dan Isaacs (Xilinx), and David Pellerin (ImpulseC)
Today's designers are constrained by space, power, and cost, and they simply cannot afford to implement embedded designs with gigahertz-class computers. Fortunately, in embedded systems, the greatest computational requirements are frequently determined by a relatively small number of algorithms. These algorithms, identified through profiling techniques, can be rapidly converted into hardware coprocessors using design automation tools. The coprocessors can then be efficiently interfaced to the offloaded processor, yielding "gigahertz-class" performance.
In this article, we explore code acceleration and techniques for code conversion to hardware coprocessors. We also demonstrate the process for making trade-off decisions with benchmark data through an actual image-rendering case study involving an auxiliary processor unit (APU)-based technique. The design uses an immersed PowerPC implemented in a platform FPGA.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)