How to design 65nm FPGA DDR2 memory interfaces for signal integrity
January 24, 2007 -- pldesignline.com
Practical techniques for "correctness by design" in DDR2 interfaces, from a signal integrity (SI) perspective; follow these guidelines to make your next 65nm FPGA design a success.
This article presents practical techniques for incorporating "correctness by design" in DDR2 interfaces, from a Signal Integrity (SI) perspective, using the current generation of available design tools. Some common DDR2 design errors are analyzed, as well as the tradeoffs between some popular design alternatives.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Xilinx, Inc. Hot IP
Related Articles
- Implementing custom DDR and DDR2 SDRAM external memory interfaces in FPGAs (part 1)
- Meeting signal integrity requirements in FPGAs with high-end memory interfaces
- How FPGA packaging drives signal integrity
- How to achieve 1 trillion floating-point operations-per-second in an FPGA
- Harness speed, performance, signal integrity, and low current advantages of 65nm QDR family SRAMs
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow