How to write an optimized FIR filter
April 23, 2007, dspdesignline.com
This article shows how to write optimized FIR filter code for a DSP, using the Texas Instruments C55x architecture as an example.
Today's DSP architectures are made specifically to maximize throughput of DSP algorithms, such as a DSP filter. Some of the features of a DSP include:
- On-chip memory – Internal memory allows the DSP fast access to algorithm data such as input values, coefficients and intermediate values.
- Special MAC instruction – For performing a multiply and accumulate, the crux of a digital filter, in one cycle.
- Separate program and data buses – Allows the DSP to fetch code without affecting the performance of the calculations.
- Multiple read buses – For fetching all the data to feed the MAC instruction in one cycle.
- Separate Write Buses – For writing the results of the MAC instruction. Parallel architecture – DSPs have multiple instruction units so that more than one instruction can be executed per cycle.
- Pipelined architecture – DSPs execute instructions in stages so more than one instruction can be executed at a time. For example, while one instruction is doing a multiply another instruction can be fetching data with other resources on the DSP chip.
- Circular buffers – To make pointer addressing easier when cycling through coefficients and maintaining past inputs.
- Zero overhead looping – Special hardware to take care of counters and branching in loops.
- Bit-reversed addressing – For calculating FFTs.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)