Using an open debug interconnect model to simplify embedded systems design
By Tom Cunningham, Freescale Semiconductor
(08/29/07, 12:05:00 AM EDT) -- Embedded.com
Technology people are generally familiar with the Open Systems Interconnection model for computer networks and protocols, often referred to as the OSI Reference Model (ISO 7498)[1]. The Basic Reference portion of the model consists of seven layers which build upon each other with increasing levels of abstraction (See Figure 1 below).
This article postulates that a similar abstraction may be applied to the embedded debugging world, with functional layers analogous to the OSI model. Further, individual layers can be assigned to particular debug entities, just like, for example, the association of the OSI network layer to routers, or the application layer association with a host.

Figure 1. OSI Layers and Example implementations
The intent here is to explore levels of debugging functionality, with the OSI model as a guide, and identify hierarchical layers and associations among hardware and software to produce a model of debugging interrelationships. It is hoped that such a model may provide clarity in understanding the myriad ways debugger components interact.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- An Industrial Overview of Open Standards for Embedded Vision and Inferencing
- Processor-In-Loop Simulation: Embedded Software Verification & Validation In Model Based Development
- Real-Time Trace: A Better Way to Debug Embedded Applications
- Simplify the Internet of Things connectivity of embedded devices
- Use open loop analysis to model power converters with multiple feedback paths
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow