Ensuring Power Designing Works at 65nm
October 22, 2007 -- edadesignline.com
When designers jump from the 90-nanometer (nm) to 65nm process nodes, many factors conspire to make things more complicated. For instance, at 65nm, designers can fit a lot more functionality onto a chip, which draws considerably more power " unless the designer knows how to optimize for power reduction. TSMC has already optimized its technology for low power design. The 65nm process uses new gate-oxide material, strain engineering, and low-K interconnect dielectric. Nevertheless, at that feature size, dynamic and leakage power issues remain. This means techniques for mitigating power consumption must come from the design side. The earlier these low power design techniques are employed, the greater the return in power savings.
To accommodate foundry customers' 65nm designs, it is in everyone's best interest to fully leverage TSMC processes with compatible, power-saving EDA tools. TSMC already brings to bear low-power methodologies and IP aimed at reducing dynamic, active, and standby power leakage. All of these low-power methodologies require fully automated EDA support.
However, a fully optimized low power methodology requires more than just process support. It also requires that design tools in the methodology communicate low power design intent in a single, standard format. The Si2 Common Power Format (CPF), the first low-power EDA format embraced by TSMC for 65-nm low power design, enables this capability.
Ultimately, low power designs employ a variety of power reduction techniques such as power gating, multiple-voltage domains and dynamic voltage scaling. Because there are so many concurrent variables in designing with multiple techniques, TSMC has taken a phased approach to ensuring that automation of these techniques results in verifiable improvements to 65nm designs. This article describes an early program to validate the Common Power Format for use with TSMC technology.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Designing AC/DC Adaptors for USB Type-C Power
- Power Management: Designing from a System-level Perspective
- Power-Sensitive 65nm Designs Increase the Need for Transistor-Level Verification
- Designing Low Power Standard Cell Library With Improved Drive Granularity
- Designing low-power multiprocessor chips
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- System Verilog Assertions Simplified
- Smart Tracking of SoC Verification Progress Using Synopsys' Hierarchical Verification Plan (HVP)
- Dynamic Memory Allocation and Fragmentation in C and C++
- Synthesis Methodology & Netlist Qualification