Debugging multiprocessor code
EE Times (07/21/2008 12:00 AM EDT)
Debugging code running on multiprocessor computing systems, and, in particular, parallel code on multicore devices, is an old computing problem that has reached a certain prominence and urgency because of the profound transformation of hardware from single-processor to multiprocessor and multicore solutions in the past few years. But beyond software engineers' moaning and groaning that hardware is making life harder, what does this transformation really mean? It's one thing to claim that something is difficult, but it is something else entirely to produce a solution that truly helps.
There are several different schools of thought about multiprocessor software design and debugging, depending on the background of those in the discussion. Sometimes, the issue is optimizing an "embarrassingly parallel" algorithm by writing a small piece of new code to run on a particular parallel machine. Other times, it is taking an existing many millions of lines of code and simply making them work correctly in a parallel world. Although I think that most cases involve a mix of both, the bigger immediate problem is posed by large pieces of existing working code. One obvious example is the battle between SMP (symmetric) and AMP (asymmetric) setups, an argument often more religious than anything else. It is also an argument quite irrelevant to the debugging question.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow