Using yesterday's methodologies to design today's multi-FPGA systems is a recipe for disaster
Programmable Logic DesignLine (01/07/09, 01:20:00 PM EST)
The demand to meet multiple, sometimes conflicting, constraints means it's a wonder that FPGA and PCB designers aren't fitted for straightjackets by the time the board finally tapes out.
A well-known episode of the popular 1960's Star Trek TV series was titled "The Trouble with Tribbles." Zipping through some distance corner of the universe at warp 10, the Enterprise was mysteriously overrun by fuzzy little creatures possessing a couple of unreedeming qualities: a voracious appetite and a propensity to reproduce uncontrollably (in McCoy's words, "They are born pregnant").
Looking at the growth of FPGA pin counts and device complexity over the past 15 years, it's easy to view them as modern-day, high-tech Tribbles. And, like Tribbles, solutions for dealing with them, at the board level, are proving just as illusive.
Unfortunately, designers aren't Captain Kirk and there are no sacrificial extras that can be killed off in an attempt to resolve the crisis (unless you consider perhaps the managers that produce unrealistic schedules in the first place). While engineers can't yet beam the final design to their desktop with just seconds to spare, there are products that can significantly reduce the torment associated with FPGA-based systems design while increasing the design team's overall productivity.
This article explores the tools, techniques, and problems that designers struggle with when developing FPGA-based systems and, using a couple of real-world examples, attempts to offer solutions.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Multi-FPGA NOC Based 64-Core MPSOC: A Hierarchical and Modular Design Methodology
- EDA tools and Design Methodology for multi-FPGA Designing/ Prototyping
- Analyzing the Options in High-Bandwidth System Interconnect-or, Serial: It's Not Just for Breakfast
- ACE'ing the verification of a cache coherent system using UVM
- Design and Implementation of an OCP-IP Compliant 64-Node Butterfly Network on Chip on Multi-FPGA
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)