Using switched capacitors to create programmable analog logic blocks in mixed-signal designs
Sachin Gupta, Cypress Semiconductor
EETimes (8/18/2010 2:18 AM EDT)
Any physical system design needs both analog and digital functionality. Achieving a modular, programmable design is crucial for the demanding applications of future, which has led to more and more designs integrating subsystems and using mixed-signal architectures.
Scalability as well as dynamic changes in customer requirements are two of the challenges designers face when implementing a system using fixed-function components. A modular, programmable design helps overcome the issues associated with the porting of designs to different devices at a later stage in a product’s lifecycle.
For these kinds of applications, a programmable design allows a more flexible approach compared to fixed-function implementations. Achieving such flexibility in the analog domain, however, has been a challenge for developers. The use of switched capacitor circuits greatly helps resolve this issue
Switched capacitor blocks are the basic building blocks of a programmable analog solution. They enable the integration of both analog and digital functions onto a single chip and define today’s true system-on-chip (SoC) architectures. Conventional analog signal processing circuits use continuous time circuits consisting of resistors, capacitors and operational amplifiers.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Mixed-Signal Designs: The benefits of digital control of analog signal chains
- A Methodology for Describing Analog/Mixed-Signal Blocks as IP
- Simplifying analog and mixed-signal design integration
- Electrically-aware design improves analog/mixed-signal productivity
- Mixed-signal SOC verification using analog behavioral models
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)