Analyzing multithreaded applications - Identifying performance bottlenecks on multicore systems
Nandan Tripathi and Amrit Singh, Freescale Semiconductor
EETimes (4/7/2011 11:04 AM EDT)
Abstract
Various aspects preventing applications from achieving theoretical maximum utilization of multicore resources include: operating system (scheduling, synchronization, etc.), application code (parallelization factor, data/function decomposition, etc.), and hardware architecture scalability (cores, memory subsystem, interconnects, etc.).
We use various multithreaded execution scenarios generated through EEMBC's Multibench as stimulus. We introduce a step by step methodology to analyze these scenarios and identify the bottlenecks. Techniques used for kernel tracing, time/function profiling, etc. and tools used to deploy the methodology are discussed next. The paper ends with discussion of various case studies representing different bottlenecks.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- Achieving multicore performance in a single core SoC design using a multi-threaded virtual multiprocessor: Part 2
- Achieving multicore performance in a single core SoC using a multi-threaded virtual multiprocessor: Part 1
- Meeting Increasing Performance Requirements in Embedded Applications with Scalable Multicore Processors
- Protecting multicore designs without compromising performance
- Optimizing performance, power, and area in SoC designs using MIPS multi-threaded processors
New Articles
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
- Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation
Most Popular
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- UPF Constraint coding for SoC - A Case Study