Taking a multicore DSP approach to medical ultrasound beamforming
Robert Krutsch, Freescale Semiconductor
EETimes (7/5/2011 12:29 AM EDT)
A critical factor in the design of many medical ultrasound equipment designs is the effectiveness of the beamforming algorithms, a signal processing technique used in sensor arrays for directional signal transmission or reception. But until recently, the computational power needed to do such signal processing – at a reasonable cost and with the resolution needed for medical diagnostic purposes – was only possible with FPGAs and ASICS.
Now, however a new generation of dedicated digital signal processing architectures can bring a lot of processing power and highly parallel architectures to the problem at a much lower cost and at lower power.
This article describes how to use a Freescale DSP MSC8156 loaded with software libraries for B-Mode images that produce diagnostically useful medical ultrasound imaging results, using no more than about 38% of the resources of the DSP, leaving enough room to also fit Doppler Imaging modes.
In B-mode ultrasound, a linear array of transducers simultaneously scans a plane through the body that can be viewed as a two-dimensional image on screen, whereas in the Doppler mode, the ultrasound system makes use of the well-known Doppler effect to measure and visualize blood flow.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- A Formal Methods-based verification approach to medical device software analysis
- Using scheduled cache modeling to reduce memory latencies in multicore DSP designs
- Adopting An SOC-based Approach to Designing Handheld Medical Devices
- PRODUCT HOW-TO: Taking the delay out of your multicore design's intra-chip interconnections
- Taking a closer look at Intel's Atom multicore processor architecture
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)