A new wave in wireless: Small cells for a heterogeneous network
Guillaume de la Roche, Ph.D., Alan Taylor, Mindspeed Technologies, Inc.
EETimes (11/17/2011 1:14 PM EST)
The majority of today’s cellular networks are now on their third generation (3G). Based on Universal Mobile Telecommunications System (UMTS) or Code Division Multiple Access (CDMA) technologies, they support data rates of a few megabits per second (Mbps) under low-mobility conditions. During the last few years, these networks have been overwhelmed as the number of cell phones has dramatically increased. Meanwhile, most cellular service subscribers now also use the mobile Internet and, over the past three years, many new broadband mobile devices have been commercialized including smart phones, tablets and laptops with 3G capabilities. As a result, the amount of wireless data that cellular networks must support is exploding.
This avalanche of mobile data makes it increasingly difficult for operators to ensure sufficient network performance. Yet the only way they can remain competitive and continue offering unlimited data plans is to reduce the price/performance ratio for mobile data. In response, the industry has introduced the LTE standard as the first step toward a new 4G cellular network, which has recently entered the deployment phase. The latest releases of the LTE specifications also include the concept of the Heterogeneous Network (HetNet), which will rely heavily on System-on-Chip (SoC) integration to handle the computational complexity of many different types of small cell Evolved NodeB (eNodeB) LTE base stations.
In particular, a HetNet requires a special variation of application-specific SoCs that enable more robust, multi-level parallelism while delivering all the required eNodeB Layer 1-3 protocol stack software and managing its execution across multiple programmable processing cores.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)