Improving Verification through Property Specification
Silicon transistor capacity, the ability to utilize these transistors in a design, and the time required to verify these designs are all considerations that drive our decisions about architecting the next generation system-on-a-chip. While silicon capacity continues to increase along the Moore's Law curve (enabling us to create very large systems), the effort required to verify these larger designs has increased at an even greater, and thus alarming, rate-doubling roughly every 6 months. In addition to rising silicon capacity, our ability to utilize this larger silicon capacity has also increased approximately ten-fold within the past decade due to the widespread acceptance of synthesis technology. However, the ability to verify larger systems has not kept pace. Rather, verification productivity has experienced only incremental improvements during the same period. What is clearly needed in verification techniques and technology is the equivalent of a synthesis productivity break-though. This article explores a verification break-through prompted by multi-level specification techniques.
Related Articles
- Improving Performance and Verification of a System Through an Intelligent Testbench
- Improving Software Development and Verification Productivity Using Intellectual Property (IP) Based System Prototyping
- Differentiation Through the Chip Design and Verification Flow
- Out of the Verification Crisis: Improving RTL Quality
- Formal property verification: A tale of two methods
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |