Scalable UHD H.264 Encoder - Ultra-High Throughput, Full Motion Estimation engine
Removing pessimism and optimism in timing analysis
Naman Gupta - Freescale Semiconductor
10/1/2012 10:29 AM EDT
Timing defines the performance of a chip. If timing constraints are not met, the chip is as good as dead. Any extra pessimism in timing analysis not only requires more time to fix the critical paths but could negatively impact other important parameters such as power and area. In the worst case, it might leave no option but to reduce the functional frequency of the design. On the other hand, optimism in timing analysis might result in silicon failure. Finding a bug in silicon can be a ponderous task, not to mention the monetary and goodwill loss for design companies. It is therefore prudent to remove undue pessimism and optimism from timing analysis.
Clock architectures have become fairly complex for modern SoCs. In synchronous design, clock controls the switching of sequential elements of the design and functionality of logic is ensured through meeting the required setup and hold checks. Timing engineers must remove any undue pessimism/optimism in the calculation of clock path delay because it can be detrimental for the design.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Distorted Waveform Phenomena in 7nm Technology Node and its Impact on Signoff Timing Analysis
- Static timing analysis: bridging the gap between simulation and silicon
- Reducing Turnaround Time with Hierarchical Timing Analysis
- Practical Applications of Statistical Static Timing Analysis
- Cell model creation for statistical timing analysis
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- System Verilog Assertions Simplified
- Smart Tracking of SoC Verification Progress Using Synopsys' Hierarchical Verification Plan (HVP)
- Dynamic Memory Allocation and Fragmentation in C and C++
- Synthesis Methodology & Netlist Qualification