NVM OTP NeoBit in Maxchip (180nm, 160nm, 150nm, 110nm, 90nm, 80nm)
High-yield, high-performance memory design
Trent McConaghy - Solido Design Automation
EETimes (11/5/2012 10:33 AM EST)
In TSMC 28nm process and as process nodes scale, achieving target yields can be extremely challenging. Nowhere is this truer than for memory circuits, which aggressively adopt next bleeding-edge process nodes to help meet increasingly tighter performance specifications and higher levels of integration.
This article reviews the challenges raised by process variation, and in particular for memory with its high-sigma components. It then discusses an approach to address variation with accurate statistical MOS modeling, plus the ability to analyze billions of Monte Carlo samples in minutes. This solution is now in place and rapidly gaining adoption.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Optimizing high-performance CPUs, GPUs and DSPs? Use logic and memory IP - Part I
- Attofarad accuracy for high-performance memory design
- High-Performance, High-Precision Memory Characterization
- Transactional Level Modeling (TLM) of a High-performance OCP Multi-channel SDRAM Memory Controller
- Infrastructure ASICs drive high-performance memory decisions
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)