High-yield, high-performance memory design
Trent McConaghy - Solido Design Automation
EETimes (11/5/2012 10:33 AM EST)
In TSMC 28nm process and as process nodes scale, achieving target yields can be extremely challenging. Nowhere is this truer than for memory circuits, which aggressively adopt next bleeding-edge process nodes to help meet increasingly tighter performance specifications and higher levels of integration.
This article reviews the challenges raised by process variation, and in particular for memory with its high-sigma components. It then discusses an approach to address variation with accurate statistical MOS modeling, plus the ability to analyze billions of Monte Carlo samples in minutes. This solution is now in place and rapidly gaining adoption.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Optimizing high-performance CPUs, GPUs and DSPs? Use logic and memory IP - Part I
- Attofarad accuracy for high-performance memory design
- High-Performance, High-Precision Memory Characterization
- Transactional Level Modeling (TLM) of a High-performance OCP Multi-channel SDRAM Memory Controller
- Infrastructure ASICs drive high-performance memory decisions
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology