High-performance hardware models for system simulation
Chris Eddington - Synopsys
12/11/2012 11:37 AM EST
Introduction
System simulators are becoming an increasingly important part of the FPGA and ASIC verification process, particularly for system-on-chips (SoCs) with performance-critical hardware accelerators and tightly-coupled embedded software. Cycle accuracy (CA) of the peripheral hardware is often a requirement or very desirable in many cases, especially if greater simulation performance over RTL simulation can be achieved. Some examples include:
- Detailed performance and utilization of system interconnect, based on the actual hardware implementation running with its embedded software.
- Implementation of low-level drivers and firmware, which require register maps and may rely on exact latency and flow control behavior of the peripheral.
- Software optimization, which can be particularly important for algorithm hardware accelerators, codec development, as well as in cases where hardware and software are tightly coupled and there is a critical overall performance goal in latency, throughput, etc. In such scenarios, estimates by ISS and TLM can be off by a factor of three, resulting either in wasted silicon or chips that cannot meet their required performance.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Synopsys, Inc. Hot IP
Related Articles
- HW/SW Interface Generation Flow Based on Abstract Models of System Applications and Hardware Architectures
- Reusable Device Simulation Models for Embedded System Virtual Platforms
- How to give crime-fighters a flexible, high-performance edge with programmable logic
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- The rise of FPGA technology in High-Performance Computing
New Articles
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
Most Popular
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology