Circuit reliability challenges for the automotive industry
Dina Medhat, Mentor Graphics Corp.
1/14/2013 11:38 AM EST
In the automotive industry, reliability and high quality are key attributes for electronic automotive systems and controls. It is normal for these automotive applications to face high operating voltages, and high electric fields between nets that can lead to oxide breakdown. Moreover, electrical fields can influence sensitive areas on the chip, because high-power areas (60V, 80V, 100V, etc.) are commonly located next to logic areas (1.8V, 5V, etc.). Consequently, when designing and verifying many smart power processes, designers must deal with metal spacing design rules that are dependent on voltage drop. For example:
- Metal2 minimum spacing can be x if voltage drop across lines is up to 30V, and it will be y if voltage drop across lines is up to 80V. Where y > x, similar rules apply for the rest of the metal layers.
- Minimum spacing between metal and poly is x where voltage difference is higher than V volt.
- Shapes on a specified metal layer can’t cross a specified area, based on the voltage difference.
- It is not allowed to cross an adjacent metal level if voltage drop is higher than V volt.
Trying to implement such rules in the entire design flow, starting from layout routing implementation through design rule checking (DRC), is too conservative, as well as inefficient, due to lack of voltage information on nets (both in schematic and layout). Trying to achieving this goal with traditional exhaustive dynamic simulation is simply not practical, due to the turnaround time involved, and, if the design is very large, it may not even be possible to simulate it in its entirety. Design teams need a way to determine the voltages at all internal nodes statically. Advanced EDA solutions that can quickly and accurately evaluate customized electrical requirements can help designers achieve their goal of generating the proper net voltage information in an efficient static way.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Reliability challenges in 3D IC semiconductor design
- IPs for automotive application - Functional Safety and Reliability
- A Look at New Open Standards to Improve Reliability and Redundancy of Automotive Ethernet
- Challenges in LBIST validation for high reliability SoCs
- Automotive System & Software Development Challenges - Part 2
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)