Synthesis-aware clock analysis and constraints generation
Jason Xing, Vice President of Engineering, ICScape Inc.
EETimes (5/6/2013 10:33 AM EDT)
Physical implementation challenges of clock nets
The intentions of a clock tree synthesis (CTS) tool are to create a balanced clock network with short insertion delay, smaller skews, and as few buffers as possible. Long clock insertion delays will create large on-chip variation (OCV) on clock network, which makes timing closure harder to accomplish. Large clock skews will add to the timing closure problem.
Clocks are fast-switching signals by design. In today’s SOC designs, the number and complexity of clock networks require a large number of buffers to sufficiently drive the clock signals around the chip, thereby increasing power consumption. This increase in power consumption is a major problem in wireless and handheld device markets, which are primarily driving today’s semiconductor market.
Modern SOC designs use complex clock structures, and the number of clock trees is growing from a handful to a few hundred. Prior to the availability of CTS, physical designers did not have adequate tools to analyze clock structures. Since CTS tools are not logically aware, clock constraints are used to optimize the clock graph that CTS will work on.
However, the number of clocks in today’s designs has exploded the complexity of clock constraint generation, which for the most part is a manual task. This often results in the generation of improper or non-optimal clock constraints, leading to post-CTS clock structures with long clock latency, large clock skew, and high buffer count.
In addition, modern SOC designs use advanced techniques such as multi-voltage domains to reduce chip power, and such structures make the balancing of clock networks very difficult.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow