Debugging FPGA-based video systems: Part 2
Andrew Draper, Altera Corp.
Embedded.com (June 2, 2013)
Most digital video protocols send video frames between boards using a clock and a series of synchronization signals. This is simple to explain but it is an inefficient way to communicate within a device, as all processing modules need to be ready to process data on every clock within the frame, but will be idle during the synchronization intervals.
Using a flow-controlled interface is more flexible because it simplifies processing blocks and allows them to spread the data processing over the whole frame time. Flow-controlled interfaces provide a way to control the flow of data in both directions e the source can indicate on which cycles there is data present and can backpressure when it is not ready to accept data.
In the Avalon ST flow-controlled interface the valid signal indicates that the source has data and the ready signal indicates that the sink is able to accept it (i.e. is not backpressuring the source).
If you are building a system from library components, most problems will occur when converting from clocked-video streams to flow-controlled video streams, and vice versa.
E-mail This Article | Printer-Friendly Page |
|
Intel FPGA Hot IP
Related Articles
- Debugging FPGA-based video systems: Part 1
- FPGA-based video surveillance comes of age
- PRODUCT HOW-TO: Debugging hardware designs with an FPGA-based emulation tool
- Picking the right MPSoC-based video architecture: Part 2
- A configurable FPGA-based multi-channel high-definition Video Processing Platform
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)