Automotive System & Software Development Challenges - Part 1
Frank Schirrmeister, Cadence Design Systems
EDN (November 5, 2013)
Today’s high-end cars contain between 70 and 100 embedded processors and run up to 100 million lines of code according to the IEEE Spectrum article “This Car runs on Code.” Specialized cars, like Indy cars can have many more sensors and data acquisition/telemetry components to optimize for racing. Integration of all the hardware and software needed to make any car perform correctly is no small task. It takes a lot of simulation, modeling, verification and IP.
This article will summarize the development challenges from analog-mixed-signal simulation to proper system configuration as well as hardware software co-design and outline some solutions that are essential to successful system development across the design chain.
E-mail This Article | Printer-Friendly Page |
|
Cadence Hot IP
Related Articles
- Automotive System & Software Development Challenges - Part 2
- Dealing with automotive software complexity with virtual prototyping - Part 1: Virtual HIL development basics
- Dealing with automotive software complexity with virtual prototyping - Part 2: An AUTOSAR use case
- Developing an automotive electrical distribution system Part 1: System design
- Paving the way for the next generation audio codec for the True Wireless Stereo (TWS) applications - PART 1 : TWS challenges explained
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)