Handling Asynchronous Clock Groups in SDC
Sanjay Churiwala & Balachander Krishnamurthy, Xilinx
EETimes (11/15/2013 04:40 PM EST)
Introducing CDC
Most SoC designs in today's world employ multiple clocks and commonly have many clock domains. As data crosses from one clock domain to another within the design, the potential for metastability problems arises due to asynchronous clock domain crossings (CDCs).
Figure 1: An asynchronous crossing with simple double flop synchronization.
In Figure 1, there is an asynchronous CDC for the data going from flop F1 (clocked by C1) into F2 (clocked by C2), assuming that C1 and C2 are asynchronous with respect to each other.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Xilinx, Inc. Hot IP
Related Articles
New Articles
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
Most Popular
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology